Interannual Variation in Terrestrial Ecosystem
Carbon Fluxes in China from 1981 to 1998

CAO Ming-Kui1,2, TAO Bo1, LI Ke-Rang1, SHAO Xue-Mei1, Stephen D PRIENCE2
(1. Institute of Geographic Sciences and Natural Resources Research, The Chinese Academy of Sciences, Beijing 100101, China;
2. Department of Geography, Maryland University, College Park, Maryland, 20742, USA)

Abstract: A dynamic biogeochemical model was used to estimate the responses of China’s terrestrial net primary productivity (NPP), soil heterotrophic respiration (HR) and net ecosystem productivity (NEP) to changes in climate and atmospheric CO₂ from 1981 to 1998. Results show that China’s total NPP varied between 2.89 and 3.37 Gt C/a and had an increasing trend by 0.32 % per year, HR varied between 2.89 and 3.21 Gt C/a and grew by 0.40 % per year, Annual NEP varied between -0.32 and 0.25 Gt C but had no statistically significant interannual trend. The positive mean NEP indicates that China’s terrestrial ecosystems were taking up carbon with a total carbon sequestration of 1.22 Gt C during the analysis period. The terrestrial NEP in China related to climate and atmospheric CO₂ increases accounted for about 10 % of the world’s total and was similar to the level of the United States in the same period. The mean annual NEP for the analysis period was near to zero for most of the regions in China, but significantly positive NEP occurred in Northeast China Plain, the southeastern Xizang (Tibet) and Huang-Huai-Hai Plain, and negative NEP occurred in the Da Hinggan Mountains, Xiao Hinggan Mountains, Loess Plateau and Yunnan-GuiZhou Plateau. China’s climate at the time was warm and dry relative to other periods, so the estimated NEP is probably lower than the average level. China’s terrestrial NEP may increase if climate becomes wetter but is likely to continue to decrease if the present warming and drying trend sustains.

Key words: China; net primary productivity (NPP); soil heterotrophic respiration (HR); net ecosystem productivity (NEP); climate change

From a major source and sink of atmospheric carbon, terrestrial ecosystems regulate seasonal and interannual variations and affect the long-term changing trend in atmospheric CO₂ concentration. Since the Industrial Revolution, terrestrial ecosystems have absorbed about 20% of CO₂ released from fossil fuel burning and land-use changes, and the uptake have increased substantially in the past decades (Bolin et al., 2000; Prentice et al., 2001). Despite extensive and intensive studies in the last decades, the magnitude, spatio-temporal variation, and underlying mechanisms of the terrestrial carbon sink remain uncertain because of the high heterogeneity, temporal variability, and mechanistic complexity in the processes and factors controlling ecosystem carbon cycle. These uncertainties are limiting our ability to predict the future atmospheric CO₂ concentration and climate change, and affect policy-making for mitigate the greenhouse effect. As a country with the third largest land area, China has diverse climate and ecological zones that include almost all types in the world, and some of which are unique. Therefore, quantification of the responses of China’s terrestrial ecosystem carbon fluxes to climate change is of great significance to estimating the global terrestrial carbon sink. In the last decade, great progress has been made in the study of China’s terrestrial ecosystem productivity and carbon storage (Zhou and Zhang, 1996; Fang et al., 1996; 2001). It has been estimated that the carbon storage in China’s vegetation is about 6 Gt C, soil carbon storage is 92 - 186 Gt C, total net primary productivity (NPP) is 2 - 3 Gt C (Zhou and Zhang, 1996; Fang et al., 1996; 2001), annual carbon uptake by forest is 0.02 - 0.05 Gt C, and agricultural soil may take up 0.14 Gt C/a. However, few studies have been conducted to quantify the interannual variations and changing trend in China’s terrestrial ecosystem carbon fluxes. Process-based ecosystem models describe mechanistic processes of ecosystem carbon cycle and their dynamic responses to changes in environmental conditions, and have been widely used in identifying and quantifying the terrestrial carbon sink (Mellilo et al., 1993; Cao and Woodward, 1998a; Cramer et al., 2001). Modern ecosystem models are developed based on extensively tested eco-physiological mechanisms, and have been used extensively in global climate change studies. As these models are driven with actual changes in environmental conditions and ecosystem pattern (such as vegetation distribution and composition), they can realistically capture the spatio-temporal pattern in terrestrial carbon fluxes. More importantly, ecosystem modeling is an essential tool to project the future changes in ecosystem carbon fluxes. In this study, we estimated the dynamic responses of China’s terrestrial ecosystem carbon fluxes to changes in climate and atmospheric CO₂ during
the period 1981 - 1998 using the Carbon Exchange in the Vegetation-Soil-Atmosphere System (CEVSA) model (Cao and Woodward, 1998a; 1998b). With the simulation results, we analyzed the spatial distribution, interannual variations, and changing trend of China’s terrestrial carbon fluxes and their correlations with climate variability.

1 Methodology

1.1 CEVSA model

Terrestrial ecosystem carbon cycle occurs through the processes of photosynthesis, autotrophic respiration, litter production, and heterotrophic respiration (HR) that are controlled by the eco-physiological characteristics of biomes (e.g. photosynthetic pathway, leaf form and phenotype) and by environmental conditions (e.g. radiation, temperature, water and nutrient). To couple these biological and environmental controls over ecosystem carbon fluxes, CEVSA (Cao and Woodward, 1998a; 1998b) includes three modules (Fig. 1): the biophysical module calculates the transfer of radiation, water, and heat to determine canopy conductance, evapotranspiration and soil moisture; the plant growth module describes photosynthesis, autotrophic respiration, carbon allocation among plant organs, leaf area index (LAI) and litter production; the biogeochemical module simulates the transformation and decomposition of organic materials and nitrogen inputs and outputs in soils. The detailed descriptions of the model are given in Cao and Woodward (1998b) and Woodward et al. (1995). The key processes in the model are described in the following sections.

Fig. 1. A schematic representation of Carbon Exchange in the Vegetation-Soil-Atmosphere System (CEVSA) that was used in this study to estimate interannual variations in terrestrial ecosystem carbon fluxes and stocks. GPP, gross primary productivity; LAI, leaf area index; NPP, net ecosystem productivity; NPP, net primary productivity.

1.1.1 Plant photosynthesis and NPP Plant photosynthesis depends on the CO$_2$ utilization efficiency of photosynthetic biochemical processes and CO$_2$ supply by diffusion through stomata into leaf intercellular spaces. The rate of plant CO$_2$ assimilation implied by biochemical processes (A_b) is (Collatz et al., 1991)

$$A_b = \min\{W_r, W_l, W_p\} \left(1 - 0.5 \frac{P_o}{\tau P_r}\right) - R_d$$

where W_r represents the efficiency of photosynthetic enzyme system, specifically the carboxylating enzyme Rubisco, and is related with foliar nitrogen content. W_l is the limitation of electron transport to photosynthesis as a function of incident photosynthetically active radiation (PAR). W_p is the limitation of triose phosphate utilization to photosynthesis, representing the capacity of the leaf to utilize or export the product of photosynthesis. P_o and P_r are the internal partial pressure of O$_2$ and CO$_2$ respectively. τ is a factor depending upon temperature. R_d is the rate of respiration in light due to processes other than photorespiration.

Stomatal conductance controls the diffusion of CO$_2$ from the atmosphere into the intercellular air spaces and thus CO$_2$ supply for photosynthesis. The rate of plant CO$_2$ assimilation implied by the stomatal conductance to CO$_2$ (A_d) is (Harley et al., 1992)

$$A_d = \frac{g_s P_o}{160}$$

where g_s is stomatal conductance, and P_o is the partial pressure of atmospheric CO$_2$. g_s is the stomatal conductance when plant CO$_2$ assimilation is zero at the light compensation point, and g_s is an empirical sensitivity coefficient. A is the actual rate of plant CO$_2$ assimilation. R_h is relative humidity of the air surrounding the leaf. T is absolute temperature. $k_s(w_s)$ describes the response of stomatal conductance to soil water content (w_s).

The above equation shows that, in addition to being affected by many environmental factors, plant CO$_2$ assimilation and stomatal conductance interact with each other for keeping a balance between CO$_2$ utilization and supply in the intercellular air spaces. They can only be determined by iteratively solving the nonlinear equations that arises by setting A_d equal to A_b. In the calculations, the plant canopy is divided into layers, each of which has a unit of LAI and the rates of CO$_2$ assimilation and stomatal conductance of each layer are calculated separately. LAI is determined based on the conditions that the net CO$_2$ assimilation in the lowest layer is above zero and the water balance between water supply (from precipitation and soil water storage) and losses through evapotranspiration (Woodward et al., 1995).

1.1.2 Carbon allocation, accumulation and turnover in vegetation To balance leaf carbon assimilation and root nutrients and water uptake, plants allocate fixed carbon proportionally among leaves, stems (including branches) and roots. For grasses, carbon allocation between leaves, stems, and roots is estimated with fractional parameters (Cao and Woodward, 1998b). For trees and shrubs, the carbon fixed by the plant canopy (A_p) is allocated to leaves (C_L), stems (C_S) and roots (C_R) as:

$$A_p = C_L + C_S + C_R$$

C_L is calculated as follows:

$$C_L = \text{LAI} \times S$$

© 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
where S is specific leaf area. According to Givnish (1986), a fraction of A_i is allocated to leaves (f) and is estimated as:

$$ f = \frac{R_m}{R_i + R_m} $$

(6)

where R_m is the leaf mesophyll resistance to CO$_2$ uptake, and R_i is the stomatal resistance to water loss (Woodward et al., 1995). Based on the calculated f and C_L, C_R is given as:

$$ C_R = C_L (1 - f) / f $$

(7)

C_R is then calculated by difference in equation (4).

The carbon allocated to plant organs will either be accumulated, lost through autotrophic respiration, or shed as litter entering into soils. Autotrophic respiration includes growth and maintenance respiration, which is affected by temperature, carbon storage, and photosynthetic rate (Woodward et al., 1995). The carbon in various plant organs is given a mean residence time with a statistical distribution (Lloyd and Farquhar, 1996), based on which the carbon storage in various plant organs and litter production are estimated. The seasonality of litter production is determined according to the phenology of various vegetation types, in which aboveground litter fall occurs at the end of the growing season in deciduous forests and annual grasses, in spring in a seasonal evergreen vegetation, and is spread evenly over the year in an evergreen vegetation. Root litter shedding was simulated in a similar way, except that root litter shedding is made to lag one month behind the aboveground litter fall (Box, 1988).

NPP and the change of the carbon storage in the standing vegetation are

$$ NPP = A_1 - \sum R_i $$

(9)

$$ \Delta V G C / dt = AI - \sum R_i - \sum LT_i $$

(10)

where R_i and LT_i are, respectively, the autotrophic respiration and litter production of leaves, stems, and roots.

1. 1. 3 Soil heterotrophic respiration (HR), soil carbon storage, and net ecosystem production (NEP)

Litter entering soils is transformed into soil organic matter, and finally is decomposed into gaseous carbon products through microbial decomposition. CEVSA divides soil organic matter into pools of surface litter, root litter, microbes, and slow and passive carbon materials (Cao and Woodward, 1998b). All carbon transformations and decomposition of these pools were considered to be first-order rate reactions and each of them has a specific decay rate that is adjusted according to temperature, soil moisture, nitrogen availability, soil texture, and litter quality (lignin/nitrogen ratio). HR is determined as the sum of gaseous carbon loss in microbial decomposition of various carbon pools:

$$ HR = \sum SOM_i K_i (1 - \varepsilon) $$

(11)

Where SOM_i and K_i are the carbon storage and decay rate respectively of various carbon pool. ε is the assimilation efficiency, i.e., the fraction of decomposed carbon that is incorporated in microbial tissue. The change in soil carbon storage is the difference between litter input and microbial respiratory loss:

$$ \Delta S O C / dt = LT - HR $$

(12)

1. 1. 4 Net ecosystem production (NEP)

The difference between NPP and HR, defined as NEP, represents the net carbon uptake or release by ecosystems through biological activities:

$$ NEP = NPP - HR $$

(13)

If there is no other disturbances, such as fire and harvest, NEP can be considered as the net carbon exchange flux between terrestrial ecosystems and atmosphere. A positive NEP indicates that the ecosystem is a carbon sink, negative NEP a carbon source.

2 Model Validation, Running and Data Sources

2. 1 Model validation

CEVSA was developed based on intensively tested algorithms to describe eco-physiological processes involved in ecosystem carbon cycle. Meanwhile, the model estimates of NPP, LAI, and carbon storage in vegetation and soil agree well with field measurements and the data derived from satellite remote sensing (Cao and Woodward, 1998b; Woodward et al., 1995). Figure 2 shows a good correlation between the NPP estimated with CEVSA and from field measurements (Cramer et al., 2001). In addition, CEVSA model has been used at global and regional scales in quantifying the dynamic responses of terrestrial ecosystem carbon fluxes to climate change (Cao and Woodward, 1998a; Cao et al., 2001; 2002).

2. 2 Model running and data sources

We run CEVSA with observation-based data sets of climate, atmospheric CO$_2$, and vegetation distribution to calculate the changes in NPP, HR, NEP, and the carbon stocks in vegetation and soils in the period 1981-1998. The climate data were supplied by the Climatic Research Unit, University of Norwich, U.K. that include monthly-mean values of temperature, precipitation, water vapor pressure, wet day frequency, diurnal temperature range, and sunshine duration with a spatial resolution of 0.5° (New et al., 2000). Monthly atmospheric CO$_2$ concentration and surface air temperature data were extracted from the International Geosphere-Biosphere Programme (IGBP) Global Primary Production Data Initiative (GPPDI) data set (Cramer et al., 2001).

Fig. 2. Comparison between the estimated net primary productivity (NPP_{est}) with CEVSA and that from field measurements. The measured NPP data for about 50 000, 5° grid cells were derived from the International Geosphere-Biosphere Programme (IGBP) Global Primary Production Data Initiative (GPPDI) data set (Cramer et al., 2001).
The distribution of land cover types in China from data based on remote sensing.

Anomalies in nationally mean NPP, HR, and NEP as deviations of their values for a given month from the mean for that month in the period 1981 - 1998. The dashed lines are the trend lines. Abbreviations are the same as in Fig. 1.

Net primary productivity (NPP)
China's total terrestrial NPP we estimated to vary between 2.89 to 3.37 Gt C/a with a mean value of 3.09 Gt C/a. The interannual coefficient of variation was 4.3%, and the fluctuating magnitude (the difference between the maximum and minimum annual NPP) was up to 0.48 Gt C, 15.6% of the average value for the period 1981 - 1998 (Figs. 4, 5). NPP ranged from 40 g C·m⁻²·a⁻¹ for open shrubs to over 1,000 g C·m⁻²·a⁻¹ for evergreen broad-leaved forests, the nationally mean value was 340 g C·m⁻²·a⁻¹. The NPP in Southwest and Southeast China accounted for two thirds of the nation’s total, whereas North, Northeast and Northwest China contributed the remaining one third. Interannual variation in NPP was correlated positively with annual precipitation.
The minimum and maximum NPP occurred, respectively, in 1997 and 1998. In 1997, NPP in Southeast and Southwest China increased with increases in precipitation, however the nationally mean NPP decreased by 14% from the mean value as a consequence of warming and drought across North China. In that year, NPP in Northeast, North and Northwest China was 8% - 24% lower than the average value, because precipitation decreased by 12% - 28% and temperature increased by 0.5 - 1.2 °C. The largest decrease in NPP occurred in Songnen Plain, Huang-Huai-Hai Plain, and Loess Plateau, where annual NPP decreased by 140 g C/m^2. In 1998, NPP was 9.4% higher than the average value in the analysis period as both temperature and precipitation reached the highest on the records in the 20th century, and the increases occurred in almost all regions. In this year, precipitation increased by over 25% in Northeast China, North China Plain, eastern Xizang (Tibet), western Yunnan, the hilly areas of the southern China, and Xinjiang.

NPP had an increasing trend by 0.32% per year during the analysis period (R^2 = 0.21, P < 0.05). The mean NPP in the later 1990s (1995 - 1998) was 4.1% higher than that of the early 1980s (1981 - 1985). The NPP increases were mainly related to the increases in atmospheric CO2 concentrations and precipitation. Experimental data indicate that each 1 ppmv increase in the atmospheric CO2 concentration would enhance plant photosynthesis by about 0.20% (Wullschleger et al., 1995; Curtis and Wang, 1998). With this rate, the increase in atmospheric CO2 concentration by 27 ppmv (Keeling and Whorf, 1999) during the period 1981 - 1998 can increase NPP by 5.40%, explaining most of the estimated 5.76% by the present study. Meanwhile, the increases in precipitation in the later 1990s in some regions of North China, Xinjiang and Southwest China also helped to increase NPP. During the period 1981 - 1998, annual NPP increased in most regions of the country, of which the increases of more than 50 g C/m² occurred in Liaohai Plain, North China Plain, and the coastal areas of southeastern China. Because of warming and drought in the later 1990s, NPP decreased in the Loess Plateau, Du Henggan Mountains, Xiao Henggan Mountains, Sanjiang Plain and the Changbai Mountains (Fig. 6).

3.2 Soil heterotrophic respiration (HR)

The annual total HR varied between 2.89 and 3.21 Gt C (Figs. 4, 5), the mean value was 3.02 Gt C/a, and had a similar spatial pattern as NPP. The coefficient of variations in annual HR was 3.1% and varied by 0.31 G C interannually. Annual HR was correlated with temperature (R^2 = 0.56, P < 0.01), but was not with precipitation at the national scale. As expected, the highest and lowest HR occurred, respectively, in years with the highest (1990, 1994 and 1998) and lowest temperatures (1983, 1989 and 1993). The correlation of HR with temperature was positive in all regions but Southeast China, but the correlation with precipitation differed between regions. HR in Northwest and North China was not...
Fig. 6. Changes in NPP (A) and HR (B) from the earlier 1980s (1981 - 1985) to the later 1990s (1995 - 1998) and the mean NEP (C) for the period 1981 - 1998 (g C · m⁻² · s⁻¹). Abbreviations are the same as in Fig. 1.

statistically correlated with interannual variations in precipitation, but the limitation of water availability to changes in HR was evident. For instance, annual mean temperature in these regions increased by 1.5 - 2.0 °C during the period 1984 - 1990, however HR had no substantial increases because precipitation did not increase. In Southeast China, HR was negatively correlated with precipitation, it usually increased in dry years. In Southwest China, HR increased with the increases in precipitation. HR increased markedly in 1997 and 1998 that were the warmest years in the 20th century (Fig. 6), however, the spatial pattern of the increases differed between the two years because 1997 was dry but 1998 the wettest year in the analysis period. In 1997, HR increased mainly in Nei Mongol, Loess Plateau and Songnen Plain, where temperature increased by 0.8 - 1.2 °C, and precipitation decreased by 20% - 30%, whereas HR decreased in Yunnan and Xizang due to cooling and in Southwest China due to the increases in precipitation. In 1998, HR increased mainly in central and Southwest China but decreased HR in regions along the Great Wall and the Xiao Hinggan Mountains. As expected, HR decreased in cool years, such as 1983 and 1993, across the country, particularly in Northeast China, Loess Plateau, and Yunnan-Guizhou Plateau.

During the period 1981 - 1998, HR increased by 0.40 % per year (R² = 0.45, P < 0.01) with the increases in temperature by 0.04 °C/ear (R² = 0.42, P < 0.01). The total HR increased robustly from 2.94 Gt C/a in the earlier 1980s to 3.13 Gt C/a in the later 1990s. We estimated that an increase in temperature by 1 °C could cause the increases of 0.17 Gt C in China’s total HR. Large increases in HR occurred in Northeast China Plain, Nei Mongol, Loess Plateau and the coastal areas of South China, where annual HR in the later 1990s is over 50 g C/m higher than in the earlier 1980s (Fig. 6).

3.3 Net ecosystem productivity (NEP)

During the period 1981 - 1998, China’s total terrestrial NEP varied between -0.32 and 0.25 Gt C/a with a mean value of 0.07 Gt C/a (Figs. 4, 5). The carbon storage increased by 0.84 Gt C in vegetation and 0.38 in soils, so the total carbon uptake was 1.22 Gt C during the analysis period. The map of the mean annual NEP (Fig. 6) shows that most parts of China was carbon balanced (Fig. 6), however, significant carbon uptake occurred in Northeast China Plain, the northeastern Xizang, and Huang-Huai-Hai Plain, and carbon releases occurred in Da Hinggan Mountains, Xiao Hinggan Mountains, Loess Plateau, Yunnan-Guizhou Plateau, the hilly regions in Shandong, Zhejiang and Fujian Provinces. During the period 1981 - 1998, HR had a higher growth rate than NPP, but NEP had no statistically significant decreasing trend because of the high interannual variability (Fig. 4). In most areas, the increases in NPP were counterbalanced by the increases in HR, so NEP had no much change. However, NEP decreased with decreases
in NPP in the Loess Plateau, Da Hinggan Mountains, Xiao Hinggan Mountains, and Changbai Mountains.

As a residual between NPP and HR, NPP was one to two orders of magnitude lower, so the coefficient of variations of annual NPP was as high as 196%, and the interannual magnitude was 0.56 Gt C, about eight times of the mean value for the period 1981 - 1998. Changes in NPP contributed mainly to the interannual variation in NPP, but HR played a major role in some years (Fig. 5). For example, a cooling-induced decrease in HR in the period 1991 - 1993 caused the increases in NPP despite decreases in NPP. The interannual variation in NPP was positively correlated with precipitation ($R^2 = 0.26, P < 0.05$), but its relationship with temperature was complicated. NPP was usually low in years with low temperature (e.g. 1983 - 1985 and 1991 - 1993), but the changes in warm years depended largely on precipitation. In 1997, NPP is the lowest and HR is the highest, so NPP reduced markedly, and the resulting carbon release was three times of the total carbon release in all other years. In this year, NPP was negative throughout the northern China (excluding Sanjiang Plain), of which North China Plain, Loess Plateau and Northeast China Plain had NPP below -100 g C·m$^{-2}$·a$^{-1}$. In 1996, NPP was the highest due to the increases in NPP but decreases in HR. In this year, except in Northeast China and Fujian Province where severe drought occurred, NPP was positive in all other regions, particularly, NPP was high than 100 g C·m$^{-2}$·a$^{-1}$ in North China Plain and Nei Mongol, where temperature decreased by 0.3 °C and precipitation increased by 28%. In 1991 - 1993, although NPP decreased in North China and Northeast China with drought, NPP was high because of drastic declines in HR with cooling.

In the northern China, interannual variation in NPP generally agree with that in NPP, in contrast to HR, seemed playing an important role in the southern China. For example, the decreases of NPP in Southeast China in 1986, 1988 and 1994 were caused by a sharp rise of HR. In Southwest China, the interannual coefficient of variations in HR was 56% higher than that of NPP, whereas HR is contributed more to the changes in NPP than NPP. In this region, NPP increases in the earlier 1980s and 1990s (1982 - 1983, 1992 - 1993) and decreases in the later periods (1987 - 1988, 1997 - 1998) were caused mainly by the variations in HR, for example, although the NPP in 1998 was highest, but the NPP was the lowest because of substantial increases in HR.

Although NPP had no a clear interannual trend because of the high variability, the growth rate of HR was higher than that of NPP, implying that the capacity of the terrestrial carbon uptake may be undermined by the ongoing climate change. The mean NPP for the period 1981 - 1998 was near to zero in most regions of China, however, significantly positive NPP occurred in some areas of Northeast China Plain, southern Tibet and Huang-Huai-Hai Plain and negative NPP in Da Hinggan Mountains, Loess Plateau, Yunnan-Guizhou Plateau, and the southern hilly areas.

The total annual NPP estimated in the study is in middle of other estimates. For example, it was estimated as 2.65 Gt C/a by Sun et al using a radiation use efficiency model (Sun and Zhu, 2001), and 3.65 and 4.72 Gt C/a respectively by Xiao et al using Terrestrial Ecosystem Model (TEM) (Xiao et al, 1998) and Liu using TEPF (Terrestrial Ecosystem Production Process Model in China) (Liu et al, 2001). We compared of the carbon densities estimated with CEVSA model and those obtained with measured data. It is indicated that most of the vegetation and soil carbon densities simulated with CEVSA are in the range of the measured ones and in good agreement (Li et al, 2003). Nevertheless, the model estimates of NPP, HR, and NPP had to be validated with data from filed measurements. Currently, few observational data are available about the long-term changes in these ecosystems carbon fluxes, and the measurements of the carbon fluxes over large areas have not been conducted, but such research programs have been initialized in China. We will evaluate and validate the model estimates as the data become available. Although agreeing well with the results based on satellite observations, the estimates with process-based models have many uncertainties. For example, we used the climate and soil data at a spatial resolution of 0.5° and the model application in China have not been validated with observation data. We are currently developing the 0.1°, 10-d climate data to do more detailed analyses and are involved in the recently initialized flux measurements in China for model evaluation and validation.

The global terrestrial carbon sink in the past two decades ranged from 2.0 to 4.0 Gt C/a (Prentice et al, 2001; Bolin et al, 2000). A global study with CEVSA estimated that atmospheric CO$_2$ increases and climate change caused global NEP between -0.64 and 1.68 Gt C/a with a mean of 0.62 Gt C/a during the period 1981 - 1998 (Cao et al, 2001), the mean value of other models’ estimates is about 1.0 Gt C/a (Cramer et al, 2001). According to the estimate of this study, China’s terrestrial carbon uptake in response to the changes in atmospheric CO$_2$ and climate accounts for 7% - 10% of the world’s total and is equivalent to the level of the United States (0.08 Gt C/a) (Schimel et al, 2000). Atmospheric observations show that the global terrestrial carbon sink increased from 1.9 Gt C/a in the 1980s to 2.0 - 4.0 Gt C/a in the 1990s (Prentice et al, 2001). CEVSA estimated that global NPP increased by 0.3%
and \(\textit{NEP} \) from 0.3 \(\text{Gt C} / \text{a} \) in the 1980s to 1.1 \(\text{Gt C} / \text{a} \) in the 1990s (Cao \textit{et al.}, 2001). This study shows that the growth rate of China’s terrestrial \(\textit{NPP} \) in the past two decades was higher than the global average level, but \(\textit{NEP} \) did not increase because of the warming-induced high increases in HR. Terrestrial ecosystem carbon uptake mainly occurred in boreal and temperate forests at northern middle and high latitudes (Prentice \textit{et al.}, 2001; Bolin \textit{et al.}, 2000), but there are not much these forests left in China, and the \(\textit{NEP} \) of these remaining forests, such as in Da Hinggan Mountains and Xiao Hinggan Mountains and Changbai Mountains, decreased in the period 1981 - 1998 due to warming and decreased precipitation. A recent study indicated the carbon storage in China’s forest increased in the past 20 years because of reforestation and afforestation (Fang \textit{et al.}, 2001), but our study did not consider the effect of the land-use changes.

The climate in China was warm and dry during the period 1981 - 1998 as the global mean temperature reached the highest and El Niño events was strongest on records in the same period (Folland \textit{et al.}, 2001). China’s terrestrial mean temperature in the 1990s was highest in the 20th century, and strong warming occurred in the arid regions of the northern China. Precipitation in China, particularly in the North, has been declining since the 1960s, though had some increases in the late 1990s, it was still lower than that in the 1960s. For example, the precipitation in Nei Mongol, North and Southwest China in the 1990s was 5% lower than the mean value of the 20th century. The results of study indicate that China’s \(\textit{NPP} \) decreases with drought and HR increases with warming. If the climate becomes wetter, China’s terrestrial carbon uptake would increase, but if the current warming continues without significant increase in precipitation, China’s terrestrial ecosystem could change from a weak carbon sink into a carbon source.

\textbf{References}:

Li K. R., Wang S. Q., Cao M. K. 2003. Carbon storage in China’s vegetation and soils. \textit{Sci China (Ser D)} (\(\text{D} \)) \(\text{D} \cdot \text{D} \)) \(\text{D} \cdot \text{D} \)). 33: 72 - 80. (In Chinese with English Abstract)

The CO₂ dependence of photosynthesis, plant growth responses to elevated atmospheric CO₂ concentration and their interaction with soil nutrient status. I. general principals and forest ecosystems. *Funct Ecol.*, **10**:4 - 32.

(Managing editor: HAN Ya-Qin)