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Efficient sensitivity analysis, particularly for the global sensitivity analysis (GSA) to identify the most
important or sensitive parameters, is crucial for understanding complex hydrological models, e.g.,
distributed hydrological models. In this paper, we propose an efficient integrated approach that inte-
grates a qualitative screening method (the Morris method) with a quantitative analysis method based on
the statistical emulator (variance-based method with the response surface method, named the
RSMSobol’ method) to reduce the computational burden of GSA for time-consuming models. Using the
Huaihe River Basin of China as a case study, the proposed approach is used to analyze the parameter
sensitivity of distributed time-variant gain model (DTVGM). First, the Morris screening method is used to
qualitatively identify the parameter sensitivity. Subsequently, the statistical emulator using the multi-
variate adaptive regression spline (MARS) method is chosen as an appropriate surrogate model to
quantify the sensitivity indices of the DTVGM. The results reveal that the soil moisture parameter WM is
the most sensitive of all the responses of interest. The parameters Kaw and g7 are relatively important for
the water balance coefficient (WB) and Nash—Sutcliffe coefficient (NS), while the routing parameter
RoughRss is very sensitive for the Nash—Sutcliffe coefficient (NS) and correlation coefficient (RC) response
of interest. The results also demonstrate that the proposed approach is much faster than the brute-force
approach and is an effective and efficient method due to its low CPU cost and adequate degree of
accuracy.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

parameters that may not be exactly known or directly measurable.
Therefore, model parameter estimation must be performed by

Distributed hydrological models play a key role in studying
hydrology and water resources and are also particularly useful tools
for investigating many important issues in the planning, design,
operation and management of water resources (Muleta and
Nicklow, 2005). Parameter identification, model calibration and
uncertainty quantification are important steps in the modeling
process. These steps must be considered to ensure that the results
are credible and that valuable information is obtained
(Campolongo et al., 2007; Jakeman et al., 2006). Most hydrological
models are highly complex and are characterized by a set of
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calibration in most model applications, which can reduce the
parameter uncertainty in the simulation results (Cibin et al., 2010).
However, when the number of parameters is large, the calibration
processes may be computationally intensive, and the computa-
tional cost may become prohibitive. A lack of knowledge about
parameter sensitivities may result in time wasted on insensitive
parameters (Bahremand and De Smedt, 2008). Therefore, focusing
on sensitive parameters can reduce uncertainty and lead to a better
understanding of the model and more satisfactory simulation
(Lenhart et al., 2002). At present, sensitivity analysis (SA) is helpful
to identify the important and requisite factors or parameters and
rank parameters that have significant impact on specific model
outputs of interest (Saltelli et al., 2000; Tarantola and Saltelli, 2003;
Sieber and Uhlenbrook, 2005). In addition, SA provides useful
information regarding the behavior of the simulation model,
including the identification of relevant model inputs and the
information on model construction (Confalonieri, 2010). In general,
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sensitivity analysis is conducted for a variety of reasons. For
examples, to determine which input parameters contribute most to
output variability, additional research is required to increase
knowledge of parameter behavior to reduce output uncertainty, to
determine which groups of parameters interact with each other if
parameter interactions exist, to determine which parameters are
insensitive and can be held constant or eliminated from the final
model, and to identify the optimal regions within the parameter
space in subsequent calibration studies.

Uncertainty analysis (UA) generally refers to the determination
of the uncertainty that derives from uncertainty in model factors
(Helton et al., 2006), and SA refers to the determination of the
contributions of individual and different sources of uncertain
inputs to the uncertainty in the output of a model (Saltelli et al.,
2008). SA methods are generally classified as either local or
global SA (Saltelli et al., 2000; Muleta and Nicklow, 2005; van
Griensven et al., 2006). Local SA (LSA) methods compute or
approximate the local response of the model outputs by varying
input factors or parameters individually with other factors or
parameters at some nominal settings, known as the “baseline” or
“nominal value” point, in the hyperspace of the input factors
(Spruill et al., 2000; Holvoet et al., 2005; Cibin et al., 2010; Saltelli
and Annoni, 2010). By contrast, global sensitivity analysis (GSA)
evaluates the effects of input variations on the outputs in the entire
allowable ranges of the input space (Confalonieri et al., 2010; Tong,
2010). GSA has become widely used in hydrological applications in
recent years (Crosetto and Tarantola, 2001; van Griensven et al.,
2006; Cibin et al., 2010; Ren et al., 2010) because it accounts for
the effects of interactions between different parameters, particu-
larly the nonlinear relationship between parameters and state
variables (Saltelli et al., 2000; Makler-Pick et al., 2011). Saltelli et al.
(2000, 2004) defined GSA methods by two properties (Tong, 2007b,
2010): the inclusion of influence of scales and shapes of the prob-
ability density functions for all inputs and the sensitivity estimates
of individual inputs that are evaluated while varying all other
inputs.

GSAs offer a comprehensive approach to model analysis because
they evaluate the effect of one factor while varying all other factors,
efficiently exploring the multidimensional input space
(Campolongo et al., 1999, 2011). A wide range of GSA methods are
available (Saltelli et al., 2000, 2005, 2006, 2008; Helton et al., 2006;
Campolongo et al,, 2011) and range from qualitative screening
methods (Morris, 1991; Campolongo et al., 1999, 2007, 2011; Saltelli
et al., 2009) to quantitative techniques based on variance decom-
position (Cukier et al., 1978; Sobol’, 1993, 2001; Homma and Saltelli,
1996; Saltelli et al., 1999, 2010; Oakley and O’Hagan, 2004; Xu and
Gertner, 2011). The Fourier amplitude sensitivity test (FAST) (Cukier
et al,, 1978) and Sobol’ methods (Sobol’, 1993) are the most popular
and widely investigated variance decomposition-based methods
(Homma and Saltelli, 1996; Saltelli and Bolado, 1998; Ratto et al.,
2001; Francos et al., 2003; Cariboni et al, 2007; Cibin et al,
2010). However, the FAST method does not efficiently address
higher-order interaction terms (Saltelli and Bolado, 1998; Cibin
et al, 2010). By contrast, the Sobol’ method can estimate the
interactions between the parameters and the total sensitivity index
of individual parameters (Sobol’, 1993, 2001). Although the Sobol’
method has been applied in many fields of science and engineering,
its application in hydrology has been very limited (Pappenberger
et al., 2006, 2008; Tang et al., 2007a,b; Cloke et al., 2008; Cibin
et al,, 2010). A shortcoming of GSA methods is their high compu-
tational demands (Hamby, 1994; Moore and Ray, 1999; Ascough
et al,, 2005; Makler-Pick et al., 2011). Therefore, in this paper, we
use a response surface model (RSM) to construct a statistical
simulator for the distributed hydrological model. Furthermore, an

uncertainty quantification toolkit called PSUADE (Problem Solving
environment for Uncertainty Analysis and Design Exploration, see
the Appendix) is used to generate the emulators to quantify the
parameter sensitivities.

The remainder of this paper is organized as follows: Section 2
contains a brief description of sensitivity analysis methods, such
as the Morris screening method, response surface method and
RSMSobol’ method and describes the fundamentals of the distrib-
uted time-variant gain model (DTVGM). A case study of the Huaihe
River Basin with the available data, model parameters and evalu-
ated criteria are described in Section 3. Subsequently, Section 4
illustrates and discusses the sensitivity of the DTVGM parameters
based on the statistical emulator. Some conclusions of the study are
discussed in Section 5.

2. Material and methods
2.1. Integrated approach for efficient sensitivity analysis

An efficient integrated approach is proposed to analyze the sensitivity of
hydrological model parameters in four steps: 1) constructing a complete description
of the input parameters, 2) performing a down-select screening analysis on all
uncertainty parameters, 3) constructing an approximate model using the response
surfaces (also known as surrogate functions and emulators) for a complex hydro-
logical model, and 4) performing quantitative sensitivity analysis via variance
decomposition techniques. The details are as follows:

2.1.1. Morris screening method

The Morris method (also called elementary effect method) has been proposed as
a screening method to identify a subset of inputs that have the greatest influence on
the outputs (Morris, 1991). It is a simple but effective way of screening a few
important input factors among the many that can be contained in a model (Saltelli
et al., 2008), which is based on replicated and randomized “one-at-a-time” (OAT)
design, and the detail introduction of the OAT design can see the work of Morris
(1991).

An elementary effect is defined as follows. Consider a model with n independent
inputs X;, i =1, 2, ..., n, which varies in the n-dimensional unit cube across p selected
levels (Saltelli et al., 2008). For a given value of X, the elementary effect of the ith
input factor is defined as

Xiz1,Xis - Xn)
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where 4 isavaluein{1/(p — 1),2/(p — 1), ...,1 —=1/(p — 1)}, p is the number of levels,
and X = (xy, ..., Xi_1, Xi, ..., Xp) is a random sample in the parameter space so that the
transformed point (xy, ..., X;_1, Xi + 4, ..., X,) is still within the parameter space.
Morris proposed two sensitivity measures to analyze the data: u which esti-
mates the overall effect of each input on the output, and ¢ which estimates the
higher order effects such as nonlinearity and interactions between inputs (Tong and
Graziani, 2008). To estimate these measures, Morris (1991) suggests sampling R
elementary effects for each input by randomly sampling R point XN, x@ . xB) o
ensure that there are enough regions in the design space. Campolongo et al. (2007)
proposed an improved measure, x* in place of u, with the following formulas:
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If 4 is substantially different from zero, then input i has an important “overall”
influence on the output. A large ¢; implies that input i has a nonlinear effect on the
output or that there are interactions between input i and the other inputs (Tong,
2008).

2.1.2. Response surface analysis

A response surface model (RSM), also known as a meta-model or surrogate
model, is a collection of statistical and mathematical techniques that are useful for
developing, improving, and optimizing processes (Meyers and Montgomery, 2002).
The choice of RSM for a given computational model depends on the knowledge of
the computational model itself. The software PSUADE provides a number of
response surface methods, ranging from parametric regression methods to non-
parametric methods such as Friedman’s multivariate adaptive regression splines
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(MARSs) method. In this study, the MARS approximation method is used to create
the surrogate model for an original hydrological model (DTVGM).

The MARS model is based on a nonparametric modeling approach that requires
mild assumptions about the form of the relationship between the predictor and
dependent variables (Friedman, 1991). As a consequence, the MARS model can be
used to characterize relationships between explanatory and response variables that
are difficult, if not impossible, to reveal by other regression methods (Balshi et al.,
2009). MARS modeling partitions the parameter hyperspace of explanatory vari-
ables into disjoint hyper-regions. Within each of these hyper-regions, a linear
relationship is used to characterize the impact of explanatory variables on the
response. The point at which the slope changes among hyper-regions is called
a knot, and thus the crux of the MARS technology is to automatically and adaptively
choose the number and the locations of the knots. Once the knots have been
determined, basis functions representing either single variable transformations or
multivariable interactions are constructed for each region. The basis functions and
the corresponding coefficients are then examined to extract main effect information
and detect interactions. Friedman (1991) has given a more detailed and technical
study of the MARS model.

2.1.3. RSMSobol’ method

The RSMSobol’ method, which is based on the response surface method and the
Sobol’ method, is proposed to analyze first-order, second-order and total sensitivity
indices. The implementation of the RSMSobol’ method involves the following steps:
(1) Determine what output is optimized, what input parameters should be adjusted,
and what the ranges of the input parameters should be; (2) Choose an appropriate
design of experiments (i.e., quasi-random sequence sampling method, also known
as LP-1, or LPTAU (Sobol’, 1967)) for generating the parameters samples; (3) Run the
original distributed hydrological model (i.e., DTVGM) to obtain the response
objective functions for these samples; (4) Choose an approximation emulator (i.e.,
the MARS method) to generate the RSM; (5) Use the RSM generate new parameters
samples based on an appropriate sampling design (i.e., Sobol’ sequence sampling
method); (6) Run the Sobol’ method using these samples from the RSM to obtain the
sensitivity indices of input parameters. The following provides some theoretical
description of the Sobol’ method:

The variance-based methods use a variance ratio to estimate the importance of
input factors. These methods are based on the partitioning of the total variance of
model output V(Y) using the following equation:

n

n n
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where V; represent the first order effect for each factor X; (V; = V[E(Y|X;)]) and Vj;
(Vi = VIE(Y|X;, X;)] — Vi — V)) to Vy_, the interactions among n factors.
The first-order sensitivity index S; can be calculated by

Si = Vi/V(Y) = VIE(YIXp)]/V(Y) (5)

And the second-order sensitivity index S;; can be calculated by
Vi _ VIEYXX)] -Vi—V;

Sij = VY) ~ V(Y) 6

In general, the total sensitivity index can be defined as (Homma and Saltelli,
1996; Saltelli and Tarantola, 2002; Saltelli and Annoni, 2010)

St = E(V(YX-1)/V(Y) v

where the subscript ~i refers to all of the inputs except input i. If the inputs are
correlated, the variance decomposition is no longer valid. However, Eq. (7) is still
a valid measure of total sensitivity (Tong and Graziani, 2008). In this case, we can
compute the total sensitivities by evaluating the integrals corresponding to the
partial variances of all the inputs based on the response surface models in PSUADE
software.

In addition, we also use the McKay (1995) proposed method (used as direct
method in the paper, and the direct McKay method was used for validation only, to
compare with the results of the RSMSobol’ method) to evaluate the first-order
sensitivity indices for the DTVGM parameters in the PSUADE platform (can see
the Appendix B McKay proposed method). Note that the choice of sampling method
has implications for what type of sensitivity analysis the user is able to perform. The
sampling method should be compatible with the McKay approach of first-order
sensitivity analysis in the PSUADE, that is, the Latin hypercube samples (LHS) are
used to estimate the first-order sensitivity indices using the direct method.
According to the work of Sobol’ (1967), the LP-t sampling design is designed for
numerical integration computations and generally performs better than the LHS. We
will enhance the implementation of the approach of McKay for the direct method in
the PSUADE using the quasi-random sequence sampling method in a future work.

2.2. DTVGM

The DTVGM, which was developed based on the time-variant gain model
(TVGM) (Xia et al., 1997; Xia, 2002), is used in this paper. The DTVGM has been
successfully applied to many river basins in China (Xia et al., 2005; Wang, 2005;
Wang et al., 2009; Ye, 2007; Li et al., 2009, 2010; Song et al., 2012c). The modeling
system includes multiple components of hydro-information analysis and modeling
such as input data processing, runoff generation on each sub-basin, and flow routing
between adjacent sub-basins. The model characteristics include the following: (1)
the ability to describe time-space variations of rainfall and evapotranspiration based
on DEM and spatial digital information, and (2) the ability to combine the runoff
generation process and flow routing process together by soil moisture content and
to perform the hydrological simulation based on sub-basins.

2.2.1. Water balance model

Runoff generation occurs at each unit element with three layers in the vertical
direction, involving surface runoff, interflow runoff and groundwater runoff. The
water balance equation in this model is expressed as follows:

P, + AW; = AW, +RS; + ETq; + RI; + RG; (8)

where P is the precipitation [mm], AW is the soil moisture content [mm], ET, is the
actual evapotranspiration [mm], and RS, RI and RG are surface runoff, interflow
runoff and groundwater runoff [mm], respectively. The subscripts i and i + 1
represent variables at time steps i and i + 1.

2.2.2. Actual evapotranspiration
The actual evapotranspiration is calculated by:

ET, (AW P
e, 7 (Aiwm‘ﬁ> ©)

ETq

T (10)

AW
= [(1 — Kaw)KET + Kawm]
where ET), is the potential evapotranspiration [mm], AWM is the saturated soil
moisture content [mm], Kaw is a coefficient between 0 and 1, KET is a linear or
nonlinear function of P/ETy, and f{) is a linear or nonlinear function.

The soil moisture content can be calculated considering the thickness of soil and
the volume ratio of soil moisture content as follows:

AW = Thick*W (11)

AWM = Thick*WM (12)

where Thick is the thickness of the soil [mm] and W and WM are the volume ratio of
the soil moisture content and saturated soil moisture content, respectively.

2.2.3. Runoff method

There are three layers in the DTVGM: the vegetation layer, surface soil layer and
deep soil layer. The three runoff components are the surface runoff on the land
surface, interflow runoff from the surface soil layer and base flow (groundwater
runoff) from the deep soil layer (Ye et al., 2010), as shown in Fig. 1.

The surface runoff (RS;) generated in a sub-basin is calculated by

AWg)
RS,-:g](WA'“/'I") R

where g; and g; are the time-variant gain coefficients, g; is the runoff coefficient
when the soil moisture content is equal to the saturated soil moisture, and g is the
impact coefficient of the soil moisture content. The subscript u represents the veneer
of the soil.

The interflow runoff (RI) is calculated with the assumption that the interflow
runoff is proportional to the soil moisture content, while the veneer soil moisture
content is larger than the field moisture capacity. Therefore, RI can be calculated by
a linear storage—outflow relationship (Lee, 2007; Wang et al., 2009):

(13)

_ AWuj +2AWu.i+l Ky (14)

RI;
where K; is the flow coefficient of soil water and is related to soil properties and
terrain feature, such as soil particle size, soil layer thickness, soil clearance, and
grade of slope.

The groundwater runoff (RG) is derived by the equation:

RG; = AW, -Krg (15)

where K;g is groundwater runoff coefficient, and the subscript d is the deep layer of
soil. The deep subsoil water can be computed by
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Fig. 1. The runoff generation process in the DTVGM (Ye et al., 2010).

AWy, = AWy +fo-At (16)

where fc is the infiltration rate from surface soil to deep subsoil [mm/h] and the At is
the computational time interval [h].
The total runoff is as follows:

R =RS+RI+RG (17)
2.2.4. Routing model

The kinematic wave method is used to calculate the routing runoff. The friction
term in the momentum equation is ignored, assuming that the friction slope is equal

to slope (Sp) and the river flow is unsteady open channel gradual change flow (Ye,
2007). The continuity equation is as follows:

0A 9Q
&Jra—q (18)

where A is river cross-sectional area of the river [m?], t is time [s], Q is discharge
[m? s71], x is flow path [m] and q is later inflow [m? s~!]. In addition, Q can be
calculated by

Q = A-h?3-8)/*m (19)

where n is the Manning roughness coefficient (notated as RoughRss in Table 1 to
distinguish from the number of input n) and h is the average depth of the cross
section [m].

3. Study area and data
3.1. Study area

The Huaihe River basin (see Fig. 2) is one of the seven largest
rivers in China, and flows from west to east, neighboring with the
Yellow River in the north and the Yangtze River in the south. Its
upper reaches are located in Henan, its middle reaches are located
in the Anhui province, and its lower reaches are located in the
Jiangsu province. Its trunk is approximately 1000 km long with 120
main tributaries and a catchment area of approximately
185,700 km?. The Huaihe River basin is mostly plain with a very
complicated water system, including a large number of tributaries,
many inter-provincial rivers, and numerous artificial river water
controls.

The average annual precipitation in the basin is approximately
900 mm, of which 70—80% occurs in summer. Therefore, there is

Huaihe River

vRe |y
0 1000 2000 km !t
.n?_?";

200

Legend

River Channel

I:] Sub-catchments

0 75 150

Fig. 2. Study area and location of the Huaihe basin in China.
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a considerable variability in the river flow. The average annual flow
is 853 m3/[s, with a flooding discharge of greater than 11,000 m?/s;
the discharge drops to nearly zero in the dry season. There are four
main flood control gates on the Huaihe River, approximately 4300
sluices and more than 5000 reservoirs.

In this paper, the daily precipitation, evaporation, and discharge
data from the 174 weather stations and 32 hydrological stations
from 1991 to 2000 are used to construct a DTVGM for the Huaihe
River basin. The Huaihe basin is divided into 441 sub-basins using
the DEM data, and the gradient plus inverse-distance-squared
method is used for interpolation in the study (Ye, 2007).

3.2. Model parameters

The most important and challenging task in this work occurs in
the first step, i.e., the prior knowledge of parameter information,
because the proper prescription of the ranges and shapes of the input
distributions can dramatically alter the outcome of the analysis
(Tong and Graziani, 2008), and oftentimes these ranges are obtained
by carefully analyzing data from physical experiments. For large-
scale multi-physics processes applications, physical experiments
for all of the multi-physics processes may not be feasible. For this
reason, the ranges and shapes of the input distributions in this work
are obtained by carefully analyzing data from physical experiments
and from the prior work of Ye (2007), Li et al. (2009, 2010) and Wang
et al. (2010). The parameter ranges of each input and control factor
are listed in Table 1. Because the parameter probability density
functions of most of the model parameters are unknown (Freer et al.,
1996; Manache and Melching, 2008), and some parameters are
correlated with others, we instead use uniform distribution and no
correlation for all parameters from the first step study.

3.3. Evaluation criteria

The performance of the developed models can be evaluated
using several statistical tests that describe the errors associated

Table 1
List of parameters and ranges for the DTVGM.

Parameter  Description Ranges Unit

g1 Coefficient of time-variant gain factor, [0.05, 0.50] —
related to surface runoff generation

2 Coefficient of time-variant gain factor, [1.0, 5.0] -
related to soil moisture content

K Storage—outflow coefficient related [0.01, 1.0] —
to interflow runoff generation

Krg Storage—outflow coefficient related [0.50, 1.0] -
to groundwater runoff generation

fc Infiltration rate from surface soil [0.10, 5.0] mm/h
to deep subsoil

Kaw Coefficient for calculating actual [0.01, 1.0] -
evapotranspiration

RoughRss Roughness coefficient of Manning’s [0.001,0.1] —
formula

Wmi Minimum soil moisture storage [0.01, 0.40] mm/mm

WM Upper layer saturated soil moisture [0.40, 1.0] mm/mm
storage

wMd Deep layer saturated soil moisture [0.01, 1.0] mm/mm
storage

Thick, Thickness of the upper soil layer [400, 800] mm

Thicky Thickness of the deep soil layer [400, 800] mm

AW Soil initial moisture [0.01,0.20] mm/mm

AWd Subsoil initial moisture [0.01,0.20] mm/mm

Note: In Section 4.3, when the normal distribution was used to analyze the first-
order sensitivity index, the mean (the first number in the parentheses) and stan-
dard deviation (the second number in the parentheses) of the six parameters are the
following: g; (0.3, 1.5), g2 (1, 0.8), Kaw (0.1, 2), RoughRss (0.01, 5), WM (0.5, 2), and
Thick, (600, 20), respectively.

with the model (Song et al., 2012a). After each of the model
structures is calibrated using the calibration/testing data set, the
performance can then be evaluated in terms of these statistical
measures of goodness of fit. In this study, three objective functions
and evaluation criteria, such as the water balance coefficient (WB),
Nash—Sutcliffe coefficient (NS) and correlation coefficient (RC) are
used to evaluate the model efficiency.

W =S o o

N — 1 2i=1(Qoi~ Qs,i)z (21)
11 (Qoi = Qo)

e Yt (on - Qo) (Qs-i - QS) (22)

(00 @) S (- @)

where Qs and Q, are the simulated value and observed value for the
runoff, and Q is the mean value for the corresponding runoff.

In this work, we use the selected parameters as inputs and the
objective functions as outputs for PSUADE to perform uncertainty
quantification.

4. Results and discussion
4.1. Morris screening

The Morris screening analysis is used to identify qualitatively
important parameters with respect to the responses of interest. The
Morris method must define the number of levels p, with a value of p
normally within the range of [4, 10] (Yang, 2011). Morris (1991) and
Saltelli (1999) elaborated the selection of the level number p and
the sample size, which is closely related to the computational cost
(Tong and Graziani, 2008). The paper gives the assumption that all
the inputs are uniformly distributed in the range of the parameters,
and thus the number of replications R for Morris screening is set as
40, the level p = 10, and the sample size N = 600.

The Morris screening measures can be shown graphically by
screening plots, which have as the x- and y-axes the modified
means u* and standard deviations ¢, respectively, as shown in Fig. 3.
Each input is represented on the screening plot by a point with the
coordinate (uj, oj). A relatively large magnitude (modified mean
values ") for a given input indicates its importance. Fig. 3 shows
that, Kaw and RoughRss are the most sensitive parameters and gy,
22, WM and Thick, are the second most sensitive, while the others
are relatively less sensitive for all the objective function responses
of interest (WB, NS and RC). The rankings for the different objective
function responses are slightly different, e.g., Kaw is the most
sensitive parameter for the water balance coefficient WB and
RoughRss is the most important for the Nash—Sutcliffe coefficient
NS and correlation coefficient RC. These results agree well with the
conclusions from the previous studies (e.g., Li et al., 2009; Wang
et al., 2010) in which the GLUE method and regional sensitivity
analysis (multi-parameter sensitivity analysis, MPSA) are applied to
the sensitivity analysis of the parameters g1, g2, Kaw, WM, K;, Wmi,
and AW. However, this paper selects 14 parameters for sensitivity
analysis with a view to multi-objectives and GSA. In general, the
Morris screening method has been used as an effective screening
measure to identify the few important factors in models with many
factors, and it shares many of the positive qualities of the variance-
based techniques, with the advantage of a lower computational
cost (Campolongo et al, 2007). For this work, the model run
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Fig. 3. Scatter plots for 3 responses of interest.

required approximately 5 h for N = 600, while the run times may be
approximately 2 months for N = 200,000 based on the GLUE
method (Li et al., 2009) and 3 days for N = 10,000 based on MPSA
(Wang et al., 2010) if their methods are used in this study.

The scatter plots, in addition to giving detailed information on
the standard deviation of the elementary effects, also aid in iden-
tifying anomalies as well as separating nonlinearities from inter-
actions. Fig. 4 shows that the parameter Kaw is most important
with respect to the objective function response WB, and the largest
standard deviation implies that their non-linear relationship is
more obvious or the interaction of Kaw with other parameters is
more significant. Similarly, the same results are observed for
RoughRss with respect to the responses NS and RC. In addition, g,
g2, WM, Thick,, K, and fc are relatively important and demonstrate
relatively strong nonlinearities and/or interactions.

Generally, the main limitations of the Morris screening method
include the following: it cannot provide an accurate quantitative
estimation of how much a factor contributes to the output vari-
ability, and it cannot distinguish the non-linearity of a factor from
the interaction with other factors, i.e., the nonlinearities and
parameter interactions are confounded (Yang, 2011). Campolongo
and Braddock (1999) proposed the extended Morris method to
detect interactions. However, the number of model evaluations is
0(n?), where n is the number of model input factors (Tong and
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Fig. 4. Histogram of prediction errors for the 3 responses of interest.

Graziani, 2008). The Morris screening method in PSUADE has
been enhanced to provide a qualitative assessment of parameter
nonlinearities without additional cost by taking advantage of
Morris’s multiple visits to individual inputs levels. When the
number of replications R is 40, then it is likely that each of the p
levels is used more than once. Then, a rough assessment of inter-
actions can be made by comparing the elementary effects on the
same levels (Tong and Graziani, 2008).

The Morris screening experiments, which are used to identify the
inputs that have little effect on the output variability, are compu-
tationally affordable techniques for computationally expensive
models that often have a large number of uncertain input parame-
ters. These non-sensitive inputs can therefore be fixed in subsequent
analyses without significantly modifying the prediction character-
istics of the model (Lilburne and Tarantola, 2009). Therefore, the six
parameters (i.e., g1, 22, Kaw, RoughRss, WM, and Thick,) are selected
for the subsequent quantitative sensitivity analysis.

4.2. Response surface analysis

As stated above, the response surface method is an effective
approach to reduce the computational cost of model evaluation.
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Some prerequisite should be prepared to construct a reliable and
accurate response surface model for general applications, such as
a suitable sampling method, a good interpolation scheme, and
effective validation approaches (Tong and Graziani, 2008). The
process consists of four basic steps: experimental design, model
selection, model fitting, and model validation (Hsieh, 2007). Given
the choice of a sampling method, a natural yet difficult question is
which simulation run is appropriate. A small sample may not yield
accurate statistical data, while a large sample will unnecessarily
consume computing resources (Tong, 2006). Moreover, the choice
of the sampling design is a difficult decision. Sobol’ and Shukhman
(1995) conclude that none of the sampling design techniques is
superior to the others. However, they also demonstrate that the
main advantage of a quasi-random sequence sampling design
approach is its potential for improving the convergence charac-
teristic. Therefore, the quasi-random sequence sampling design
technique (Sobol’, 1967; Statnikow and Matusov, 2002) is used in
the paper. The MARS model has some dominant characteristics: it
requires little data preparation, is suitable for handling fairly large
datasets with a tendency toward good bias-variance trade-off, and
is flexible enough to model non-linearity and variable interactions.
Therefore, the MARS method is used as a function approximation to
generate the response surface model (surrogate model). In the
MARS method based on the PSUADE platform, the number of basis
functions is 2500 and the number of knots is 500. A mix sampling
design was used to construct the response surface because Latin
hypercube/quasi-random sequence samples are good space-filling
designs, while factorial/fractional factorial are good for covering
the corners and edges (Tong, 2008). First, 2000 samples for the six
most important parameters (g1, g2, Kaw, RoughRss, WM, and Thick,,)
based on Morris screening are generated to construct and validate
the response surface model, in which 1000 samples are used as the
training set to construct model and the other 1000 samples are
used to validate it. The total computational cost is approximately
15 h for 2000 model runs, and the time for constructing the
response surface (nearly 5—10 min) is far shorter than that of the
model runs.

Another vital and indispensable step is to validate and test the
response surface. The two approaches (cross-validation based on
the first 1000 samples and experimental evaluation based on the
other 1000 samples) are applied to check the responses for good-
ness of fit by examining the interpolation error and prediction
error. The k-fold, leave-one-out and repeated random sub-sampling
validation are the common types of cross-validation. However,
leave-one-out cross-validation is usually very computationally
expensive because of the large number of times that the training
process is repeated, and the disadvantage of repeated random sub-
sampling validation is that some observations may never be
selected in the validation subsample, whereas others may be
selected more than once (in other words, validation subsets may
overlap). Consequently, the k-fold cross-validation method is used
in this work. We select the number of groups k = 500, that is, we
divide the sample into 500 groups and hold out one group at a time
and compute the prediction error statistics. The maximum relative
errors are 0.032 for WB response of interest, 0.045 for NS response
of interest and 0.035 for RC. The relative root mean square error
(RMSE) is 0.00714, 0.191 and 0.00792 for the three responses,
respectively. The error histograms for all of the responses are
shown in Fig. 4. The results demonstrate that all of the responses of
interest give acceptable interpolation errors, i.e., the sample is
adequate to represent the model input—output relationship.

In addition, the other 1000 quasi-random sequence samples are
used as an experiment test to further validate the response surface
models. Fig. 5 depicts a scatter plot between the response surface
model simulated objective function values and the corresponding

DTVGM-generated values. Note that the objective function values
(WB, NS and RC) in these figures correspond to the values from the
MARS model. The data points do not deviate greatly from the 1:1
line (solid line in the plot) for the three objective functions, which is
evident from the high R? value of 0.995, 0.971, and 0.982 for WB, NS
and RC, respectively. The plots exhibit a very intense scatter,
implying that the response surface models or surrogate models
mimic the performance of DTVGM fairly well.

For surrogate models with sufficient prediction capabilities, the
bias due to the use of the surrogate models instead of the true
model is negligible (Marrel et al., 2009). Once the sample is deemed
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satisfactory, subsequent analysis can rely on this response surface
model which is inexpensive to evaluate. Space constraints permit
some representative response surface models to be provided. The
three parameters g;, Kaw and WM are selected to construct the
response surface with respect to the three output objective func-
tion responses. The response surface plots for the three responses
of interest are as shown in Fig. 6.

4.3. Results of sensitivity analysis

The proposed approach (RSMSobol’ method) was used to esti-
mate the first, second and total order sensitivity indices of the
DTVGM parameters. The surrogate models used are inexpensive
and tractable to evaluate, and the first-order sensitivity indices for
the 6 parameters of the DTVGM were computed by sampling
100,000 times from the response surface based on the quasi-
random sequence sampling design method. The normalized
results of the first-order sensitivity index are shown in Table 2, and
indicate that the soil moisture parameter WM is the most sensitive,
while Kaw, g1 and Thick,, are relatively sensitive parameters and the
parameter g and RoughRss are less sensitive for the first two
objective function responses of interest. For the RC response of
interest, the concentration parameter RoughRss is the most sensi-
tive, and the parameters WM, Kaw and g; are of second-most
importance. Table 2 also shows that the sum of the first-order
sensitivity indices for all the objective function responses of
interest is less than 1, i.e., there are some interactions between the
parameters.

Table 2 shows the results, which are in agreement with the
results reported by Li et al. (2009) and Wang et al. (2010). Li et al.
(2009) stated the ranking of the parameters sensitivity with the
conclusion that g, WM and g are the first-class ranking, Kaw and K;
are the second-class ranking, and Wmi is non-sensitive based on
the GLUE approach with a total of 200,000 runs of a monthly scale
DTVGM. However, Li et al. (2009) merely provided the qualitative
ranking results for the six parameters with an extensive compu-
tational cost. In addition, Wang et al. (2010) also analyzed the five
parameters for a monthly scale DTVGM using the multi-parameter
sensitivity analysis (MPSA) method, and reported that the param-
eter Kaw for estimating actual evapotranspiration is the most
sensitive. For a daily DTVGM, the computational cost of each run is
larger than that of the monthly DTVGM due to the huge data and
complex routing calculation. Moreover, the proposed approach can
efficiently estimate the quantitative sensitivity indices for
a complex hydrological model.

The sensitivity outcomes usually depend on both the model
structure (e.g., time scale) and the parameter distributions
(Elsawwaf et al., 2010). Undoubtedly, challenges remain in how to
address the dependence of sensitivity on parameter distributions.
For this reason, the normal distribution is applied to compute the
first-order sensitivity indices to analyze the effect of the parameters
distributions. In this paper, the mean u and standard deviation ¢ of
the input parameters are selected subjectively based on the
previous modeling experience, which may be not well-suited to the
real system processes. Fig. 7 shows that the first-order sensitivity
indices based on the normal distribution differ from that based on
the uniform distribution, while the ranking results are accordant
with that of the uniform distribution. Fig. 7 also demonstrates that
the parameters WM and Kaw are the most important for all of the
responses. Unfortunately, the real distribution type of the input
parameters in the regions cannot be known. For the other distri-
butions (e.g., normal distribution, lognormal distribution and t-
distribution, etc.), it is difficult to provide the exact value of the
mean and standard deviation, which have significant effects on the
output objective function responses. In future work, we will explore

the variety of sensitivity indices with respect to non-uniform
distribution and ranges of input parameters. For this reason, the
subsequent sensitivity analysis (second order and total order) is
estimated based on the assumption of uniform distribution in the
ranges of input parameters.

The second-order sensitivity indices of the parameters are also
estimated based on the RSMSobol’ method. The 100,000 sample
points based on different objective function responses are used to
quantify the sensitivity indices, and the cost time is nearly to 23 h,
including 21 h for 2600 runs of the original model, approximately
1 h for constructing the response surface model and approximately
1 h for estimating the second-order sensitivity indices. The second-
order sensitivity indices between parameters for different response
surface models are shown in Table 3. The proposed method of
sensitivity analysis obviously emphasizes the interaction between
the parameters. For instance, the soil moisture parameter WM is
highly correlated to the parameter Thick, with a correlation of 0.121
for the objective function WB. In addition, the two-way interactions
between WM and other sensitive parameters (e.g., the evapo-
transpiration parameter Kaw with second-order sensitivity index
0.077 for WB and the routing parameter RoughRss with 0.099, 0.088
and 0.074 for WB, NS and RC, respectively) are relatively larger. The
other interactions are quite small for all of the objective function
responses. The results illustrate that the proposed method is
effective for identifying the interacting parameters in the DTVGM.

To address the correlated inputs or parameters, the total order
sensitivity indices are also applied to evaluate the total effect of the
model parameters on the different objective function responses
(Song et al., 2012c¢). The results, as shown in Table 4, indicate that
the soil moisture parameter WM is most sensitive for all responses
of interest. The ranking results show that the saturated soil mois-
ture WM, actual evapotranspiration coefficient Kaw and the runoff
coefficient g; have significant effects on the WB response of
interest, while WM and the Manning’s roughness coefficient
RoughRss are most important for the NS and RC responses of
interest.

As mentioned above, the DTVGM combines the runoff genera-
tion process and the flow routing process in the soil moisture
content (e.g., WM). The study by Ye (2007) implies that the satu-
rated soil moisture parameter WM influences the runoff generation
process and discharge hydrographical type. It is easy to determine
that the saturated soil moisture parameter WM affects almost all of
the processes outlined in Section 2.2. For the daily-scale DTVGM,
the runoff routing process is also important, that is, the routing
method parameter RoughRss is relatively sensitive. In particular, the
Nash—Sutcliffe coefficient and relation coefficient objective func-
tions, which are used to validate the goodness-of-fit between the
observed and simulated discharge, have a significant effect on the
output responses. The ranking results also indicate that the two
parameters are the most important and sensitive in the daily-scale
DTVGM. The parameters g (related to surface runoff generation)
and Kaw (coefficient for calculating actual evapotranspiration) are
also important for the water balance response because the water
balance strongly depends on the runoff (e.g., surface runoff, inter-
flow runoff, and subsurface runoff, in which the surface runoff
comprises the greatest proportion of the runoff) and actual
evapotranspiration according to Eq. (9). The parameters Thick, and
g are also important. In this study, the ranges of parameters are
estimated from the previous study (Ye, 2007) and may be related to
the sensitivity of the parameters Thick, and g.

4.4. Validation of RSMSobol’ method

The direct method of McKay is also used to estimate the first-
order sensitivity indices of all the 14 parameters to validate the
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Table 2

The first-order sensitivity index for 3 responses of interest.
Parameter WB NS RC

RSMSobol1? Main effect® RSMSobol1? Main effect® RSMSobol1? Main effect®

g1 0.157 0.153 0.163 0.133 0.143 0.127
j:5) 0.041 0.052 0.024 0.025 0.081 0.048
K, - 0.011 - 0.003 — 0.003
Kig — 0.000 — 0.000 — 0.000
fc — 0.029 — 0.008 — 0.005
Kaw 0.180 0.056 0.145 0.047 0.122 0.041
RoughRss 0.016 0.046 0.057 0.205 0.250 0.350
Wmi — 0.075 — 0.024 — 0.046
WM 0.288 0.311 0.245 0.146 0.113 0.099
wMd — 0.023 — 0.020 — 0.009
Thick, 0.139 0.094 0.126 0.042 0.070 0.013
Thickg — 0.000 — 0.000 — 0.000
AW — 0.000 — 0.000 — 0.000
Awd — 0.000 — 0.000 — 0.000
Sum 0.821 0.850 0.760 0.653 0.779 0.741

2 RSMSobol1: it performs variance-based main effect analysis on a response surface model (with the LP-t sampling design).
b Main effect: it computes first-order Sobol’ indices for the replicated Latin hypercube samples (the parameters assumed to be uniform distribution in the work) due to the

direct method.

proposed approach. Usually, the two methods should adopt the
same sample size. Because the brute-force approach entails huge
computational cost, the number of model evaluation is set to
10,000, and the sampling design technique is replicated LHS
sampling design because the direct method in PSUADE should be in
accordance with the LHS sampling design.

The running time of the RSMSobol’ method is approximately
30—40 min including 20 min for estimating the first-order sensi-
tivity index and approximately 10—20 min for constructing and
validating the response surface model. The 2600 runs of the
model cost approximately 21 h, that is, the total cost is
approximately 22 h, while the main effect analysis (direct
method) with 10,000 runs for the DTVGM costs 84 h (i.e. nearly 4
days, most of the time cost is incurred in running the DTVGM).
Obviously, if we estimate the first-order sensitivity index using
the brute-force approach based on the 100,000 samples, the
computational cost will be greater (potentially greater than 1
month). In addition, the results of the direct method for all 14
parameters are nearly identical to those of the response surface
method for the six screening parameters, implying that the
proposed approach is an effective method and can be applied in the
complex hydrological model.

In this study, the proposed approach, based on the statistical
emulator (or surrogate model), is an effective and efficient tech-
nique for analyzing the parameters sensitivities of a complex
hydrological model. The total computational cost is approximately
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Fig. 7. First-order sensitivity indices for 3 responses based on normal distribution.

21 h for this proposed approach for 2600 runs of the DTVGM (600
runs for Morris screening, 1000 runs for constructing the response
surface and 1000 runs for testing the response surface) and 100,000
runs of the surrogate model, while the total computational cost of
the brute-force approach, which was used to compute the main
effect using the direct McKay approach with 10,000 runs of the
DTVGM, is almost 84 h. Thus, the proposed approach was
approximately 4 times faster than the classical approach (or brute-
force approach). Assuredly if the interactions and total effects are
also estimated by using the brute-force approach, the computa-
tional cost would undoubtedly be more expensive.

4.5. Effect of sensitivity analysis in model calibration

The classification of factors (Ratto et al., 2001) consists of three
types: (I) factors with a high main effect, (II) factors with a small
main effect but high total effect, and (III) factors with a small main
and total effect. Type I factors affect model output singularly
without a dependence on interactions, while type II factors influ-
ence the output mainly through interactions. Type III factors have
a negligible effect on the model output and can be regarded as
a constant. From the difference between the main effect and the
total effect, we observe an interesting phenomenon, i.e., the
parameter RoughRss is type Il for the WB response, type Il for the
NS response and type I for the RC response. Thus, these parameters
should be calibrated and optimized carefully, particularly for multi-
objective calibration. If the non-sensitive parameters are selected
for optimization, the calibration of the hydrological model will be
more complex and entail a greater computational cost because it is
heavily dependent on the number of parameters.

The sensitivity analysis was performed in order to discriminate
between insensitive and sensitive model parameters. The infor-
mation thus obtained can be used as guidelines in a data campaign
in the sense that sensitive parameters must be determine
(measured) accurately. Therefore, as known to all, parameter
identification (or sensitivity analysis) and model calibration are
important steps in model building process, to ensure that the
results are credible (Song et al., 2012c). For a given model, when the
number of parameters is large, the calibration process will be
complex with intensively computational cost. However, only few
important or sensitive parameters contribute most to the modeling
results (Bahremand and De Smedt, 2008). So, it is a critical
precondition and requirement for efficient parameter calibration
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Table 3
Second-order sensitivity indices for response surface models.
j:53 Kaw RoughRss WM Thick,
WB NS RC WB NS RC WB NS RC WB NS RC WB NS RC
&1 0.048 0.011 0.023 0.048 0.025 0.017 0.002 0.027 0.007 0.031 0.033 0.014 0.022 0.015 0.021
2 0.004 0.001 0.03 0.006 0.023 0.041 0.062 0.017 0.006 0.011 0 0.007
Kaw 0.013 0.002 0.015 0.077 0.039 0.006 0.036 0.025 0.031
RoughRss 0.099 0.088 0.074 0.015 0.031 0.019
WM 0.121 0.042 0.019

and optimization (Song et al., 2012c). In addition, SA provides
useful information regarding the behavior of the simulation model,
which includes the identification of relevant model inputs and the
information on model construction (Confalonieri et al., 2010). Ratto
et al. (2001) also indicated that the quantitative sensitivity analysis
can account for conditioning on observations and provide useful
information about the model internal structure because the influ-
ence of model structure on model output due to the input param-
eters to a certain extent.

Furthermore, model calibration and optimization has been
performed based on the results of sensitivity analysis to estimate
the important parameters (see Song et al., 2012b). For those non-
sensitive parameters, it is better to use fixed values for the cali-
bration to increase the tractability of the model calibration at lower
computational cost. Meanwhile, most models of reasonable
complexity include some unidentifiable parameters (e.g., parame-
ters for which sufficient information does not exist in the stream-
flow observations or other response variables of interest) and that
therefore cannot be identified in the calibration process. If these
unidentifiable parameters are allowed to vary freely during cali-
bration, the resulting values will have little meaning (since one
value is presumably no better than another) (van Werkhoven et al.,
2009). Therefore, the SA results may also aid the identification of
the model parameters, and make parameter space be effectively
searched by current optimization algorithms by reducing the
number of model parameters.

Saltelli and Annoni (2010) indicated that sensitivity analysis is
particularly useful in pinpointing which assumptions are appro-
priate candidates for additional data collection to narrow the
degree of uncertainty in the results. In addition, we also find that
the response surface method as a surrogate model can be used for
various purposes: (1) sensitivity analysis, by helping to highlight
the most important input factors of the mapping, (2) model
simplification, by finding a surrogate model containing a subset of
the input factors that account for most of the variability Y, (3) model
calibration, in which the surrogate model is used to find directly the
optimal parameterization for fulfillment of the given calibration. In
a way, it is useful to search the optimal parameter value from the
response surface relationship between the model parameters and
the output objective functions, and it can be used to optimize the
parameters sets in a complex model, which has been widely used in
the engineering problems and would be a good practice for
hydrological modeling system.

Table 4

Total sensitivity indices for the 3 responses of interest.
Parameter WB NS RC

Sti Rank Sti Rank Sti Rank

g1 0.216 3 0.198 4 0.212 3
2 0.071 5 0.043 6 0.129 6
Kaw 0.248 2 0.188 5 0.192 4
RoughRss 0.024 6 0.241 2 0.357 1
WM 0.365 1 0.386 1 0.234 2
Thick, 0.184 4 0.231 3 0.178 5

5. Conclusions

In this study, an efficient integrated approach is proposed to
conduct global sensitivity analysis for distributed hydrological
models. This approach integrates the qualitative screening method
(Morris method) with the quantitative analysis method (RSMSobol’
method based on a statistical emulator) and is implemented with
less computational cost to the DTVGM. The results can be
summarized as follows:

The Morris screening method is particularly useful for compu-
tationally expensive models or multi-parameter models (tens or
hundreds of parameters). It can screen out non-sensitive or
unimportant parameters with a few runs of the model. The six
sensitive parameters, g1, g2, Kaw, RoughRss, WM, and Thick, were
selected from the 14 input parameters for quantitative GSA.

The response surface method is a statistical emulator or meta-
model approach to simulate the original DTVGM and can greatly
reduce the number of model evaluation runs in the sensitivity
analysis. The MARS method, a nonparametric modeling approach,
can characterize nonlinear relationships between the objective
function responses and input variables in hydrological models.
Compared to other response surface methods, the MARS method
requires little data preparation, is suitable for handling fairly large
datasets with a tendency toward a good bias-variance trade-off,
and is flexible enough to model non-linearity and variable
interactions.

The RSMSobol’ method consists of a combination of the
response surface method and the variance-based method. It is an
efficient approach with less computational cost than the brute-
force approach. The RSMSobol' method provides a quantitative
measure of the sensitivity of the output variables to the different
parameters as well as complementary information such as the
impact of small changes in a specific parameter on a specific output
variable and how several parameters interact with each other to
produce changes to an output variable.

While the application of the GSA is useful for improving model
calibration by reducing the number of parameters for optimization
and lowering the computational cost in the calibration, the possi-
bility of achieving different results should be considered if a non-
uniform distribution is used. The assumption of uniform ranges is
not accurate in most conditions. In addition, although the normal
distribution was considered in this work, the means and standard
deviations of the input parameters were selected subjectively by
the author due to individual practice for the DTVGM, which may be
not well-suited to real system processes. Further analysis is
required to explore the possible impact of parameter non-uniform
distribution on the results of the GSA.

Sensitivity analysis can single out and rank the parameters
which are most sensitive, thereby providing a method with which
to prioritize our research efforts to improve parameter estimation
for the model. Furthermore, the sensitivity analysis results provide
a unique opportunity to deepen and extend our understanding of
the importance of functional interrelations within the water cycle
system. And thus, the study will provide a strong basis for
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implementing efficient parameter optimization for large and
complex hydrological models.
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information exchange to be performed via a user-written handler.
There is no need to change the simulation source code to accom-
modate the analysis, and it is sometimes called a “non-intrusive”
interface. The results can be analyzed using PSUADE's rich collec-
tion of response surface and analysis tools. PSUADE also creates
“Matlab” files for data visualization. Taking the sensitivity analysis
as an example, the flowchart for running PSUADE is as shown in
Fig. A1 (Song et al., 2011).

Sampling design

Output global sensitivity

Bl

A

I‘.SUAD:E

|
1
|
1
: > Create psuade.in
1 A X 11
1 T 1
| % I >
! I ;
I I
| X> 1 1
;A 1
(e — I Sample points
| T , | I
I : I l
| X3 I
| I Running drive model
| A 1
I
I 9 |——
] % [l ' 1 1 4
f |
1 ! \ I Running main program
e S
1 Xy .

Evaluate objective function

Fig. A1. Operation framework in PSUADE for sensitivity analysis. Note: PDF is short for probability density function.

50939006). We gratefully acknowledge the contribution of Ai-
zhong Ye (Beijing Normal University) and Lu Li (University of
Oslo, Norway) for assistance with the DTVGM. The authors are
grateful to the reviewers for assistance and thought-provoking
comments.

Appendix A. PSUADE

PSUADE (https://computation.llnl.gov/casc/uncertainty_quantif
ication/) contains a rich set of tools for performing UA, GSA, design
optimization, and model calibration, etc. It also has a suite of
sampling methods such as Monte Carlo, full and fractional factorial,
Latin hypercube, orthogonal arrays, and one-at-a-time methods, etc.
Furthermore, uniform, normal and lognormal distributions are
available for inputs (Tong and Graziani, 2008). PSUADE also provides
a rich set of statistical analysis tools such as basic statistics, corre-
lation analysis, and variance decomposition using main effect
analysis, among others (Tong, 2007a). In particular, PSUADE
supports a global sensitivity methodology for models with large
number of parameters and complex constraints and has been used
for multi-physical processes models (e.g. Hsieh, 2007; Tong, 2007b,
2008; Tong and Graziani, 2008).

PSUADE supports a user-friendly interface via input and output
filters. Once a sampling design has been created, it systematically
feeds the design points into parameter files and calls a user handler,
which absorbs the sample data and inserts the data into the model
input files. The user handler then requests computational resources
for the evaluation, waits for its completion, and extracts the output
data from the model output files. The protocol allows all

Appendix B. Main effect analysis by McKay

McKay (1995) proposed an efficient estimation method based
on the use of a single replicated Latin hypercube sampling design
for all n inputs. The essence of this analysis is the statistical measure
called variance of conditional expectation. We let E(Y) and W(Y) be
the prediction mean and variance of an output variable Y, and

V(Y) = V(E(Y[Xi)) + E(V(Y[X))) (B1)
where X; is the ith input. Here the first term on the right hand side is
the variance of the conditional expectation of Y, conditioned on X;. It
is also denoted as VCE(X;). The second term is an error or residual
term. VCE measures the variability in the conditional expected
value of Y as the input X; takes on different values, while the
residual term represents the variability in Y not accounted for by
the input X;.

Using a replicated Latin Hypercube design, each X; takes on
distinct values Xj;, j = 1,..., S where S is the number of levels. The
expectation conditioned on X; = x;j is

_ 1 KR
=4 121 Yy (B2)
k=

where Yj; is the output corresponding on the kth replication and
with X; = x;;. And the variance is approximated by

1 S R 2
V(Y) = 2 I;(ij—Y>

(B3)
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The variance of conditional expectation on X; is approximated by

1 & o\ 2
VYIX = xy) =5 > (Yig - V) (B4)
k=1
and hence
1 S R
EV(YIX)) = o5 > Z(ij ) (B5)
j=1k=

According to the work of McKay (1995), the variance of
a sampling distribution can be derived from the expectation of
a sum of squares about the sample mean, i.e., it can be calculated by

25;(717)2 =SV(Y;) =S{VIE(Yj|X; = xy)]

Jj=

18 1 SR )
VCE(X, g Z 7§ 3 (Y,g- - YJ-) (B7)

Finally, we have the main effect or first-order sensitivity index
Si by

= Vi/V(Y) = VCE(X;)/V(Y) (B8)
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