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a b s t r a c t

The main aim of spatial sampling is to collect samples in
1-, 2- or 3-dimensional space. It is typically used to estimate
the total or mean for a parameter in an area, to optimize
parameter estimations for unsampled locations, or to predict the
location of a movable object. Some objectives are for populations,
representing the ‘‘here and now’’, whereas other objectives
concern superpopulations that generate the populations. Data to be
collected are usually spatially autocorrelated and heterogeneous,
whereas sampling is usually not repeatable. In various senses it
is distinct from the assumption of independent and identically
distributed (i.i.d.) data from a population in conventional sampling.
The uncertainty for spatial sample estimation propagates along
a chain from spatial variation in the stochastic field to sample
distribution and statistical tools used to obtain an estimate. This
uncertainty is measured using either a design-based or model-
based method. Both methods can be used in population and
superpopulation studies. An unbiased estimate with the lowest
variance is thus a common goal in spatial sampling and inference.
Reaching this objective can be addressed by sample allocation in an
area to obtain a restricted objective function.
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1. Introduction

Sampling concerns selection of a subset of individuals from within a population to estimate
characteristics of thewhole population. The characteristics could be the total ormeanparameter value
for a random field (Haining, 2003; Christakos, 2005), values at unsampled sites (Goovaerts, 1997), or
location of target(s) (Rogerson et al., 2004).

1.1. A brief history of spatial sampling

Intuitive application of the principles of sampling in science has occurred for a long time from
very early human history in Egypt, China and other places throughout the world. The first known
attempt to make statements about a population using information about only part of it was by the
English merchant John Graunt (1620–1674). His famous tract describes a method for estimating the
population of London on the basis of partial information. Since then, sampling theory has developed
separately from the mainstream of classical statistics (Neyman, 1934) and has evolved into an
extensive body of theory,method, and operation used daily all over theworld. ‘‘Sampling Techniques’’,
a landmark book by Cochran (1946, 1977), widely used in modern sampling practices. To deal with
two-dimensional spatial sampling, the regionalized variable theory, often referred to as geostatistics,
was well built and is widely applied in geoscience (Matheron, 1963, 1971). This approach uses spatial
autocorrelation to improve the sampling efficiency in terms of the estimator error variance in relation
to sample design and sample size (Ripley, 1981; Haining, 1988; Christakos, 2005; Stein and Ettema,
2003). Spatial stratified heterogeneity was considered to achieve more efficient spatial sampling and
inference (Goovaerts, 1997; Li et al., 2008; Wang et al., 2009a, 2010).

1.2. Contents of spatial sampling

Compared with complete enumeration, a statistically based sampling process has great
advantages. It leads to reduced costs, higher speed, greater scope and a loss of accuracy that is
negligible compared to complete enumeration (Cochran, 1977). Moreover, statistical sampling results
in designs that can be used repeatedly, hence leading to small changes in estimates, that in turn
provide measures of uncertainty. The aims of spatial sampling methods are to get results of a higher
quality at a lower cost. Commonly applied constraints are (a) a cost constraint that the costs do not
exceed a given budget and (b) a quality constraint that the quality of the resultmeets a givenminimum
requirement.

For a formal description we consider the triple (ℜ,ℑ, ψ) consisting of a random field ℜ, a design
ℑ and an estimator ψ . The triple is also called a sampling strategy trinity. The symbol ℜ refers to
characteristics of a random field such as the random error, trends, autocorrelation or stratification,
which are determinants of the sample estimation efficiency. The design ℑ refers to the procedure
determining sample selection in terms of density and location, whereas the estimator ψ defines the
procedure used to calculate an estimate of a population parameter from the sample data. It is useless
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to discuss the merits of a sampling design without considering the estimator to be used and the
characteristics of the random field, or vice versa. It is the combination of the three that determines
the accuracy of the estimates (Wang et al., 2010).

Spatial sampling and inference are divided into the following six principal steps (Cochran, 1977;
Wang et al., 2009b).

(1) Clarification of the sampling objectives to estimate the mean or total for a population, to predict
values at unsampled sites, to map an area, or to identify the position of a target. It should also
be clear that the objective is about the here-and-now population (Haining, 2003) or about the
superpopulation that generates the cross-sectional population.

(2) Definition of the population to be sampled and sampling units. Population donates the aggregate
from which the sample is chosen, and the population is then divided into non-overlapping parts
called sampling units or elements. In the spatial context, the population fromwhich sample units
are drawn and the population to be estimated may be spatially inconsistent; the former is called
the sampling population and the latter the estimating population. Note that the two are identical
for non-spatial sampling.

(3) Choice of the sampling method and computation of the sample size under specific budget and
precision constraints. A correct decision can be made using the sampling design trinity (ℜ,ℑ, ψ).

(4) Design of a sampling plan that describes where, when and how sampling units are to be taken.
(5) Drawing of the sample and taking measurements on the sampling units obtained. The collection

of measurements is commonly called the sample.
(6) Analysis of the sample in light of prior knowledge to obtain the features of the stochastic field,

such as randomness, trend, autocorrelation, or stratification. These features and the sampling
objectives provide the basis for choosing the best statistic to make inferences for population
parameters.

Two theories are commonly distinguished for sampling and inference: design-based and model-
based sampling. They differ in their element of randomness in assigning a stochastic structure to
inferences (Särndal, 1978; Särndal et al., 1992; de Gruijter and ter Braak, 1990; Haining, 2003). In
a spatial context, the ‘‘here and now’’ characteristics of a random field are obtained once the entire
area is exhaustively surveyed. The uncertainty of the sample estimation arises from the randomness of
the sampling sites, which can be reduced by increasing the sample size until the area is fully covered.
Such an approach is called design-based sampling, which can be implemented by traditional sampling
(Cochran, 1977) applied to random spatial fields. Alternatively, if a value was once a realization of
an underlying stochastic process (a superpopulation) it might not be obtained even if the entire
area is exhaustively surveyed. This approach is called model-based sampling (Särndal, 1978) and the
methods involved are mainly related to spatial statistics (Cliff and Ord, 1981; Haining, 2003) and
geostatistics (Matheron, 1963), where the random field observed is regarded as a single realization
of a spatial process or a superpopulation. Some assumptions have to be made and the process model
has to be well defined to estimate the superpopulation because only a cross-sectional observation is
available, which is often not sufficient to support inference for the superpopulation.

Clearly, the two major distinct objectives of sampling result in two major categories of estimation
techniques.

2. Design-based sampling

In design-based sampling, the population of values in the interested region are regarded as
unknown but fixed. The primary source of randomness arises by drawing a sample randomly.
Repeated sampling according to a given scheme such as random sampling will generate a distribution
of sample values, and parameters of the population and their uncertainty are evaluated using
this distribution. For example, when calculating weighted averages, the data are assigned weights
determined by the selection probabilities for the sampling locations, not by their geographical
coordinates. Design-based sampling and statisticalmethods can be used for both populations (a single
realization of a stochastic field) and superpopulations (a stochastic field). As an example of a
population, we may consider the spatial disease incidence in 1 year, whereas the disease prevalence,
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the cumulative number of cases divided by the susceptible population in a range years reflecting the
risk of disease occurrence, is an example of a superpopulation. In the population example, incidence
can bemapped as cases in that single year; in the superpopulation example, prevalence can bemapped
by averaging the cases in many years.

2.1. Sampling of i.i.d. populations

Classical sampling theory is based on probability sampling. It includes methods for sample
selection and estimation that provide, at the lowest costs, estimates that are precise enough for our
purpose (Cochran, 1977) and therefore sampling is efficient. Samples can be selected with an equal
or an unequal probability. Equal probability sampling is often apparently feasible for sampling in
practical surveys. Simple random sampling (SRS) and systematic sampling (SYS) serve as the starting
point for an understanding of sampling. In SRS or SYS, sample units are drawn independently from
each other with equal probability. It is theoretically a relatively simple approach, but it is rarely used
in practical sampling because of its low efficiency. More cost-effective sampling methods include
stratified sampling, cluster sampling, multistage sampling, two-phase sampling, and sequential
sampling (Neyman, 1934, 1938; Cochran, 1946; Horvitz and Thompson, 1952; Royall, 1968).
(1) Simple random sampling.

Although this category is rarely applied in practice because of its low efficiency, all design-based
sampling techniques originate from it and can only be fully understood with proper knowledge of
SRS. In SRS it is assumed that the population is independent and identically distributed (i.i.d.). The
sample size required to reach a prespecified precision is based on the dispersion variance of the
population and the survey precision required. Then the sample units are chosen from the population
independently with equal probability, and inferences are conducted using the sample. The population
mean Y is estimated using the sample mean y, and the variance of the estimate is proportional to the
dispersion variance of the sample and inversely proportional to the number of sampling units. The
confidence interval for themean is y±Z1− a

2
×

√
v if the population is not only i.i.d. but alsoN (0, σ 2)-

distributed, where σ 2 is the dispersion variance of the population, v is the variance of y and α is the
level of significance. SRS is not often applied in spatial studies because it completely neglects prior
knowledge for the object and leads to relatively large gaps in the sampled area. Moreover, access to
locations is often prohibitive or difficult to find, despite recent developments in global positioning
systems.

Horvitz and Thompson (1952) developed a general theory for construction of unbiased estimates.
Regardless of the selection probabilities, as long as they are known and positive it is always possible
to construct a useful estimate. Horvitz and Thompson completed the classical theory, and random
sampling was almost unanimously accepted. Most of the classical books on sampling were also
published by then (Cochran, 1946; Hansen et al., 1953).
(2) Systematic sampling.

In SYS it is again assumed that the population is i.i.d. Once the first sample unit is drawn from
the population, the other sampling units are drawn in a given preset order relative to this first
point. SYS is relatively easy to implement. It has the advantage over SRS that the sampling units
are spread more evenly over the sampled area and it may produce more precise estimates than
SRS. SYS requires the use of systematic sampling zones. The mean ysy is the same as in SRS. The
variance is v


ysy


=

1
n [

N−1
N s2 −

k(n−1)
N s2wsy], where s2 is the dispersion variance of the pooled data,

s2wsy =
1

k(n−1)

k
i=1

n
j=1(yij − yi)2,N is the number of units of the population, n is the sample size, yij

is the value for the jth sample unit in the ith systematic zone, and yi is the mean for the ith systematic
zone if the population is not only i.i.d. but also N (0, σ 2)-distributed and σ 2 is the dispersion variance
for the population. The confidence interval for the population mean is yst ± t

√
vs, where t is the

t-statistic.
(3) Stratified random sampling.

In stratified random sampling we assume that the population is spatially stratified and that the
subpopulationwithin each stratum is i.i.d. The population is divided into subpopulations called strata,
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which are non-overlapping and together comprise the whole of the population (Cochran, 1977).
SRS or SYS is then applied in each stratum. By dividing the population into subpopulations, the
heterogeneity in each stratum is reduced and it is easier to collect samples are highly representative
(Wang et al., 2010). The mean for each stratum is computed as yh =

1
nh

nh
i=1 yhi, where nh is the

sample size of stratum h and yhi is the value for the ith sample unit in stratum h. The sample mean
is yst =

L
k=1 Wkyh, where L is the number of strata and Wk is the weight for stratum k, which

can be computed as the fraction of stratum k within the population. The dispersion variance for
each stratum can be computed as s2h =

1
nh−1

nh
i=1(yhi − yh)2. The variance for the full sample is

ν (yst) = s2 (yst) =
1
N2

L
h=1 Nh(Nh−nh)

s2h
nh
, whereNh is the number of sampling units in stratum h and

the standard deviation is s =

ν (yst). The confidence interval for the sampling mean is yst ± ts(yst),

where t is the t-statistic.
(4) Cluster sampling.

For cluster sampling we again assume that the population is i.i.d. In each cluster the first sample
unit is selected randomly and the rest are drawn in an order relative to it. The population mean is
estimated as ycl =

1
n

n
i=1 yi, where n is the number of clusters and yi is the mean for the ith cluster

computed using the same method as in SYS. The variance is ν (ycl) =
1

n(n−1)

n
i=1(yi − ycl)2 and the

standard deviation is s =

ν (ycl). Note that SYS is a special case of cluster sampling in which several

clusters are chosen.
(5) Two-step random sampling.

In two-step random sampling we again assume that the population is i.i.d. and that the population
is divided into subpopulations (called primary units). The first step is to decide on subpopulations to
be sampled, which is usually done using random selection. In the next step, samples are selected, for
example using SRS within each selected subpopulation. Two-step random sampling is different from
stratified sampling in the sense that only some of the subpopulations are sampled. The population
mean is estimated as yts =

1
n

n
i=1 yi, where n is the number of primary units and yi is the mean

for the ith primary unit computed using the same method as in SRS. The variance is ν (yts) =
1

n(n−1)

n
i=1(yi − yts)2 and the standard deviation is s =


ν (yts). If the subpopulations are unequal

in size, the means and variances are calculated by embedding a weighting factor proportional to the
size of the subpopulation.

2.2. Sampling considering spatial autocorrelation

Spatial autocorrelation is ubiquitous in spatial populations. It is one possibility for taking into
account the well-known geographical principle that observations close to each other are more likely
to be similar than observations further apart. This principle is also known as Tobler’s law in geography.
Spatial autocorrelation violates the first assumption of population i.i.d., namely that of independence.
Recognizing autocorrelation has implications for the efficiencywithwhich sampling is carried out. The
variance of the estimation error may, for example, be incorrectly estimated with respect to choices
of sampling design and sample size (Ripley, 1981; Haining, 1988; Christakos, 2005). If the objective
is to estimate population parameters, then we do not need as many sample sizes as in a population
survey in which the sampling units are independent from each other. In fact, n =

1
v


σ 2

− R


=

σ 2

v


1 −

R
σ 2


= nClassic[1 − r], where R = cov


yi,yj


and r =

R
σ 2 ; v is the error allowed for the

spatial mean estimate and is defined by the variance E (yss − Eyss)2; σ 2 is the dispersion variance
of the population and is defined by E (y − Ey)2; y or yi refers to a sample element. yss is the mean
value estimated using a spatial sample; the estimation is the same as for the simple random statistic,
but their variances are different as described above. nClassic is the sample size computed using classic
sampling theory (Ripley, 1981; Dunn and Harrison, 1993, Griffith et al., 1994; Wang et al., 2009b).
If the objective is to estimate the superpopulation, then the sample size should be greater than
that for an i.i.d. population, because the variance of the sample estimation is inflated by the spatial
autocorrelation (Haining, 1988). On one hand, the number of sampling units can be decreases as the
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spatial autocorrelation increases if the aim is to estimate the population mean. On the other hand,
more sampling units are needed to estimate a superpopulation mean if sampling is constrained by a
required estimation error.

In the case of stratified random sampling, the error variance for estimating the population mean
is given by 1

n [σ
2

− cov(yi,yj)], where the second term within the square brackets is the average
autocovariance between all possible pairs (k, l) within a stratum (Ripley, 1981; Dunn and Harrison,
1993). The sample size in each stratum can also be computed as for spatial SRS. In the case of SYS,
the error variance for estimating the population mean is given by cov


yv,yu


− cov


yi,yj


, where

cov

yv,yu


is the average autocovariance between members of the systematic sample (Ripley, 1981;

Dunn and Harrison, 1993).
Early work that evaluated spatial sampling strategies in two dimensions includes contributions

from Quenouille (1949), Das (1950), Zubrzycki (1958) and Matern (1960). These theoretical studies
were based on random fields that were the outcomes of spatially homogeneous processes. Ripley
(1981) showed that SYS outperforms other sampling schemes when no prior knowledge is available
about random fields except if there is periodicity in the attribute. These findings have generally been
endorsed by empirical studies (Mátern, 1986; Milne, 1959; Payandeh, 1970).

Dunn and Harrison (1993) showed that while SYS was the most efficient of the three methods
for sampling (and random sampling consistently the least efficient), the gains in efficiency, relative
to stratified random sampling, were highly variable. They also compared two different methods for
estimating the error variance for the mean from a single systematic sample (Ripley, 1981). Their
work was based on sampling of real land-use maps with complex and varied spatial autocorrelation
structures and their findings suggested that the presence of non-stationarity and anisotropy in spatial
data could have a severe effect on the SYS efficiency.

Map stratification, whether applied to stratified random sampling or SYS, usually involves the
definition of strata and the sampler needs to decide on stratum size as well as the orientation and
starting point for the grid overlay. Typically, the starting point is chosen at random and the effect of
the starting position on the calculated sample variance is assumed to be small. This is also supposed
to be true for the grid orientation, unless there are strong directionalities in the random field, as in the
case of a repetitive ridge and valley topography for example. The stronger the spatial autocorrelation
on the map, with high levels over long distances, the greater will be the redundancy in a sample if the
inter-point sampling distance is small (Griffith, 2005). Ripley (1981) pointed out that the gain from
stratification will be high when spatial autocorrelation is large for all distances up to the scale of the
strata, beyond which the gain becomes negligible. This suggests that for monotonically decreasing
correlation functions we should take small strata and hence the number of sample points per strata
will be small (Ripley, 1981). If spatial autocorrelation structures vary in different sections of the
map, then presumably there will be efficiency gains to be achieved by adapting stratum size to such
heterogeneity (Berry and Baker, 1968).

2.3. Sampling considering spatial heterogeneity

Spatial heterogeneity is another characteristic of natural phenomena and is becoming increasingly
important in different areas of geographical data analysis and environmental sciences (Csillag et al.,
1996; Goodchild and Haining, 2004; Green and Plotkin, 2007), representing the more practical side
of spatial statistics. The heterogeneity of attributes of a geographical random field comprises two
elements of second-order variation: global variance (population variance) and the spatial structure of
that variation (population spatial autocorrelation) (Wang et al., 2010). Both elements of geographical
variation need to be recognized in designing and evaluating sample designs, including the sampling
plan and choice of the estimator (Cochran, 1977; Haining, 1988; Griffith, 2005).

Although the pervasiveness and importance of heterogeneity have been recognized and studied,
there are only a few methods for dealing with spatial heterogeneity using design-based sampling.
Purposive sampling is generally more efficient than probability sampling (Brus and de Gruijter, 1997;
de Gruijter et al., 2006). However, purposive sampling cannot satisfy the sampling randomness
required by design-based theory. Two of the main methods for dealing with spatial heterogeneity
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are spatial stratified sampling in design-based sampling and MSN (means of surfaces with
nonhomogeneity) sampling in model-based sampling (Wang et al., 2009a).

In spatial stratified sampling, the heterogeneous area is divided into several subareas that are each
more homogeneous than the area as a whole, which reduces the total variance. The division may
be based on prior knowledge, pre-sampling, an effective proxy variable (Rodeghiero and Cescatti,
2008), or the distribution of other ancillary variables that are known to affect the target variable.
After the division, the number of sampling sites is assigned to each subarea according to the area
and/or variance proportion and then SRS is applied to each subarea. Wang et al. (2010) suggested that
there are usually no ‘‘true’’ or ‘‘correct’’ divisions of the whole area of interest, but some divisions will
be better than others for any given scale of geographical detail. The authors investigated the effect
of first-order heterogeneity on the performance of different methods for estimating the population
mean and its error variance. They found that zoning improves the estimator efficiencywhen sampling
a heterogeneous random field and compared the efficiency of different stratified methods.

3. Model-based sampling

In model-based sampling, the values in a region of interest are regarded as unfixed and a set of
values observed across the region represents a single realization of a stochastic model of the variation
in the universe. The randomness in this method is introduced using a set of stochastic models also
called superpopulations. The sampling sites are fixed and inference is based on assuming the validity
of the stochastic model. To compute an estimator or a predictor, the weights of the sample data are
determined by covariances between the observations, which are given by the model as a function
of the coordinates of the sampling locations (van Groenigen and Stein, 1998). In contrast to design-
based sampling, model-based sampling features a predefined objective function that is minimized
and thus leads to a single optimal sampling scheme for that specific objective. Different objective
functions may lead to different optimal sampling schemes. A model-based sampling scheme and
model-based statistics can be applied to estimation of both population parameters (a single realization
of a stochastic field) and superpopulation (a stochastic field) parameters. Kriging, for example, can be
considered as a model-based method. The incidences in a single year are considered as a population
and a map can be produced by kriging by interpolation of incidences at the nodes of a fine-meshed
grid. A prevalence map for a range of years is a superpopulation and can similarly be produced by
kriging interpolation of prevalence at the grid nodes.

In this paper we distinguish three specific objectives that are relevant in a spatial context:
minimization of the estimation error variance, achieving equal spatial coverage for irregular polygons,
and achieving equal coverage in feature space.

3.1. Objective 1: minimizing the estimation error variance

Kriging is the main estimation method in geostatistics and was first used by D.J. Krige and H.S.
Sichel in mining theory in the 1950s and 1960s and was further developed and applied by Matheron
(1963) as a fully fledged scientific theory. It provides unbiased estimation of values of a variable at
unvisited locations with a minimum mean-squared estimation error (Isaaks and Srivastava, 1989;
Pardo-Iguzquiza andDowd, 1998; Olea, 1999; Bayraktar and Turalioglu, 2005; Saito et al., 2005;Wang
et al., 2009a). Kriging sets requirements for the random field, assuming, for example, that it is second-
order stationary and thus can be represented as a regionalized variable. Furthermore, the random
field is potentially autocorrelated in space, and is then modeled using the covariance function or the
variogram. Kriging is a generic name and consists of many variants, such as normal kriging, universal
kriging, block kriging, co-kriging, indicator kriging, factorial kriging and regression kriging, among
others. MSN is another example of a model-based approach that takes both spatial autocorrelation
and spatial stratified non-homogeneity into account to minimize the estimation error (Wang et al.,
2009a,b).

Tominimize the estimation error variance, a sample of a given size should be optimally distributed
over space (Hughes and Lettenmaier, 1981; Russo, 1984;Warrick andMyers, 1987; Sacks and Schiller,
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1988; van Groenigen and Stein, 1998; Bertolino et al., 1983; Wang et al., 2009a,b). To achieve this
purpose, a frequent requirement is that the spatial variation as provided by the variogram is known
beforehand. If this is the case, then the optimal model, which is a function of the Kriging variance, and
sampling sites are allocated initially at random in a region and are then shifted using an optimization
technique. Examples are spatially simulated annealing and particle swarm optimization (Hu and
Wang, 2011). The technique has been applied in many areas, such as in soil surveys, environmental
pollutionmonitoring and agriculturalmodeling (van Groenigen et al., 2000; Zimmerman andHolland,
2005).

3.2. Objective 2: equal spatial coverage

It can be important to have good coverage over a spatial area for several reasons. First, it may serve
as a general type of optimality, there may be good reasons for not missing out any subregion, and
there could be a good economic argument to have sparse data equally distributed. Moreover, the first
objective may not be realistic since a variogram may not be available. As an alternative in this case,
spatial coverage distributes sampling sites to cover the space as uniformly as possible over a region.
This is analogous to Horvitz–Thompson sampling, whichweights a sample by its inclusion probability
to cover unsampled units.

The criterion to apply is then minimization of the mean for the shortest distances (MMSD). The
target quantity to be minimized is the mean of the distances from unsampled sites to the nearest
sampling site. To achieve this, the area is often discretized into a finite grid and the criterion is applied
to the center of each grid cell (van Groenigen et al., 1999). An alternative is the weighted mean of
the shortest Distances (WMSD), which is the mean of distances multiplied by weights to give varying
emphasis to different subregions. Another criterion is the mean squared distance based on Thiessen
polygons. The basic idea of this criterion is that if the sampling sites are evenly distributed, the variance
of the area constructed by Thiessen polygons should equal zero, whereas the variance should be large
for unevenly distributed sampling sites. As before, sampling locations are moved at random to reach
the objective. Other methods have been proposed to disperse the distribution of the sample points.
A typical example is repulsion simulation, which distributes sampling sites evenly within a given
irregular polygon via simulation of the movements of some ideal homogeneous point charges (Chen
et al., 2012). For other purposes, grid sampling, transect sampling, sequential sampling and nested
sampling are often used in practical applications (Pettitt and McBratney, 1993; Oliver and Webster,
1986).

3.3. Objective 3: equal coverage in feature space

The objective of equal coverage in feature space is to distribute sampling units such that the
samples reveal the population distribution as well as possible. If the distribution of a population is
unknown, a postulated distribution from experience or ancillary data is used. Two main criteria used
in the literature are the Warrick–Myers (WM) and Latin hypercube sampling (LHS) criteria.

TheWMcriterion optimizes sample locations for variogram estimation (Warrick andMyers, 1987).
It approximates the distribution of sampling units such that pairs of the units follow a prespecified
distribution as closely as possible. The LHS criterion is a stratified random sampling procedure that
provides an efficient way of sampling variables from their multivariate distributions. It fully utilizes
ancillary variables to ensure each of the variables is represented in a fully stratified feature space
(McKay et al., 1979; Iman and Conover, 1980). In a recent study, a stratified conditional LHS (scLHS)
scheme based on the variance quadtree technique (VQT) and LHS using ancillary variables were
combined to coordinate both spatial coverage and feature space coverage (Lin et al., 2011).

4. Population or superpopulation?

Originally, design-based and model-based methods were developed to estimate populations and
superpopulations, respectively (Cochran, 1977; Särndal, 1978). Amajor characteristic of design-based
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sampling is that it is a combination of probability sampling and design-based inference, whereas
model-based sampling is a combination of purposive sampling and interpolation (de Gruijter et al.,
2006). Design-based sampling is more suitable for tackling ‘‘how much’’ questions, for example
estimation of global quantities, including frequency distribution of the target variable and parameters
of this distribution, such as themean, standard deviation or a quantile. Model-based sampling is more
suitable for tackling ‘‘where’’ questions, such as prediction of values for unvisited locations, mapping
and estimation of the parameters of the underlying stochastic model. If a medium sample size is
affordable, strong autocorrelations exist and a reliable model of the spatial variation is available,
model-based sampling should be considered (Haining, 2003; Wang et al., 2010). If parameters of a
small domain orwithin a local area are to be estimated, bothmethodsmay be suitable. deGruijter et al.
(2006) pointed out that the suitability of the twomethods can be expressed as functions of the spatial
resolution at which estimates are required. A decreasing function points to the appropriateness of
design-based sampling; in other words, the higher the spatial resolution, the more suitable is design-
based sampling. Conversely, the relative suitability of model-based sampling is an increasing function
of the spatial resolution of the estimator.

It can easily be determined whether a sampling objective concerns a population or a superpop-
ulation. Population sampling is involved if the attribute to be estimated is about ‘‘here and now’’.
Superpopulation sampling is involved if enumeration of the sampling units is a single realization of
a stochastic process and parameters of the latter are of interest. A population is one realization of
a superpopulation. Table 1 summarizes the objectives of sampling and inference, as well as several
methods and examples.

Table 1 lists several aspects of sampling in the spatial domain. In principle, these could also
be expanded to the spatiotemporal domain (for monitoring), but we restrict the discussion to
spatial sampling as the topic in focus. Table 1 shows that a population might consist of several
superpopulations. For example, observations of temperature across a plain on a single day (spatial
population) comprise a single realization of the meteorological process (spatial superpopulation)
of daily variations within a year (M1 in Table 1); alternatively, the population could consist of
temperature variations on that day over many years. Similar remarks apply to disease observations
(M3 in Table 1), for which the prevalence could be the human population. The number of cases of
a disease within a cross-section (human population) in China is a summation of incidences over
previous years that have not recovered yet, and hence there is a combination of prevalence and
population. Prevalence, however, could also be a superpopulation. For example, the prevalence of
neural tube defects (NTDs) in Heshun county is stable over decades or a hundred years (Gu et al.,
2007), reflecting the physical environmental risk. NTDs are rare (low probability) and the incidences
for a single or several years (within the human population) do not reflect the baseline risk in the area.
Both spatial (design-based) and temporal (model-based) sampling are highly varied. The boundary of
the twomethods vanishes as time elapses. In the same way, incidence could be either a population or
a superpopulation.

Design-based or model-based sampling methods actually provide a full sampling strategy, that is,
the components of the triple (ℜ,ℑ, ψ).

Design-based or model-based ideas also apply to non-sampling aspects and kriging is a good
example. For kriging a form of stationarity is assumed, such as second-order stationarity, intrinsic
stationarity or strict stationarity. It is assumed that the data originate from a random field and
therefore sampling within a kriging context can be categorized as a model-based method (Särndal,
1978; Brus and deGruijter, 1997). For spatial interpolation using kriging, values at unsampled sites are
predicted, and in this sense the approach is closer to a population than to a superpopulation technique.
In this sense it is also a design-based method. This demonstrates that model does not need to be
categorized as a specific type (design-based or model-based), because that might lead to unnecessary
logical confusion.

This can also affect the sampling strategy. It is best to first judge whether the objective of
using a technique concerns a population or a superpopulation. Next, appropriate models should be
identified that match the objective and a strategy on how to reach the objective should be decided
on. For example, both the incidence and prevalence could be considered from a population and a
superpopulation point of view. Before deciding on where to sample, samplers must decide which
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Fig. 1. Biased sampling.

sampling strategy is to be adopted. The appropriate strategy then depends on the objective and
relevant constraints.

5. Biased sampling and remedy

An estimate of a parameter is biased if its expectation differs from the true value of the parameter,
whatever the true value is, and the estimate is unbiased if its expectation is identical to the true value.
The expectation is a value for a population or superpopulation parameter, such as its total or mean
or the value of an individual unsampled unit. An estimate ŷ is obtained by applying a statistic ψ to a
sample y:

ŷ = ψ(y).

Therefore, the bias of an estimate ŷ depends on the interaction between the sample y and the
statistic ψ . A sample y is often said to be unbiased if it is drawn randomly (thus each sample has
an equal probability of being obtained) from its population. However, this would lead to a conflict, as
elaborated in the following section. Therefore, a sample is unbiased if it results in an estimate unbiased
to the population under a simple random statistic, a so-called SRS unbiased sample. An unbiased
estimation can be achieved using either a sample randomly drawn (with equal probability) from its
population or a sample biased to its population under SRS or remedied by a particular statistic.

For Fig. 1 it is assumed that the population is the area within the outermost circle, the population
parameter to be estimated is the innermost circle, and four samples from the population are
investigated, with the sampling units indicated by points. An SRS unbiased estimate can be obtained
either by drawing randomly from a population (Fig. 1d), or by non-randomly drawing (unequal
probability) fromapopulation (Fig. 1c). A biased sample, however, does not necessarily lead to a biased
estimate, because several statistical approaches, such as the Heckman method (Heckman, 1979) and
the B-shademodel (Wang et al., 2011), can remedy the bias of a sample in some circumstances to yield
an unbiased estimate. In otherwords, an estimateψ(y)may be biased under SRS, butmay be unbiased
under some other statistical approaches, such as the Heckman method and the B-shade method.
Fig. 1a,b shows a biased sample with low and high variations, whereas Fig. 1c,d shows unbiased
sampling of low and high variation. Fig. 1c is an SRS unbiased sample while the sample is biased to
population. The above discussion is summarized in Table 2.

6. Discussion and conclusion

The efficiency of spatial sampling can be increased by embedding prior knowledge about random
fields. From this perspective, spatial sampling theories have developed along the following path:
sampling a population that is i.i.d. (Cochran, 1977), spatially autocorrelated (Haining, 2003; Stein
andEttema, 2003; Christakos, 2005), spatially heterogeneous, and spatially autocorrelated (Goovaerts,
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Table 2
Combination of sampling and inference for Fig. 1.

Bias of an estimate Statistical method
SRS Remedy

Sample
Biased to both population and SRS*: Fig. 1a,b A. Biased B. Unbiased

Unbiased to SRS Biased to population:
Fig. 1c C. Unbiased D. N/A

Unbiased to population:
Fig. 1d

* SRS, simple random sampling.

1997;Wang et al., 2009b, 2010). The properties of the latestmethods need to be studied inmore detail;
the relationship between distinct random fields, sampling and inferencemethods, and the estimation
precision deserve to be investigated thoroughly. Although the division between design- and model-
based methods is relevant, some methods are difficult to categorize into either of these two classes.
In fact, population and superpopulation approaches are easily justified, and a research question can
be defined flexibly. Finally, spatial sampling and inference methods can be quickly and appropriately
chosen from a broad spectrumofmethods and techniques available, taking all the relevant constraints
into consideration.

The uncertainty of the final estimation originates, propagates and accumulates in the trinity of
spatial sampling and statistical inference. This consists of (1) the stochastic field ℜ, defined by its
distribution such as variability aspects; (2) the spatial sampling ℑ, including its unbiasedness and
density; and (3) the spatial statisticψ for statistical inference. Note that the bias ofℑmay be overcome
by proper choice of ψ . In practice, the determinants X of the sampling attribute may be helpful in
reducing uncertainty, especially when the sample is small or biased. (4) Determinants X: when the
original sample is small a large sample of direct determinants of the original sampling attribute or
proxy variables strongly associated with the direct determinants can be used to estimate parameters
in spatial statistics, such as stratification, auto- and cross- correlation, and ratios between sample and
population values. This was illustrated by a small sample survey of occupational diseases in China in
which data on the number and size of coalmining factories in each county in China, available from the
statistical year book published by the local government, served as a large sample of determinants. In
addition, production data for the mining industry in each county were available from the statistical
year book published by the central government and served as proxy variables.

This brings us finally to the role of a spatial statistician. S/he may contribute to implementation of
a spatial statistic ψ if the sample has already been collected, or to both spatial sampling ℑ and the
spatial statistic ψ if the data (at least in part) still have to be collected. Disciplinary scientists such as
epidemiologists and other experts in the domain represented by the field ℜ could be responsible for
choosing determinants X mostly related to the sampling attribute.
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