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a b s t r a c t

The concept and the computation of terrain representation error (ETR) are investigated and total DEM

error is presented as an accuracy index for DEM evaluation at a global level. A promising method of

surface modelling based on the theorem of surfaces (SMTS) has been developed. A numerical test and a

real-world example are employed to comparatively analyze the simulation accuracy of SMTS and the

classical interpolation methods, including IDW, SPLINE and KRIGING performed in ARCGIS 9.1 in terms

of sampling and interpolation errors and of total DEM error. The numerical test shows that SMTS is

much more accurate than the classical interpolation methods and ETR has a worse influence on the

accuracy of SMTS than those of the classical interpolation methods. In a real-world example, DEMs are

constructed with SMTS as well as the three classical interpolation methods. The results indicate that,

although SMTS is more accurate than the classical interpolation methods, a real-world test indicates

that there is a large accuracy loss. Total DEM error composed of, not only sampling and interpolation

errors, but also ETRs can be considered as a good accuracy measure for DEM evaluation at a global level.

SMTS is an alternative method for DEM construction.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A digital elevation model (DEM) is a numerical representation
of topography as a function of geographic location, usually made
up of equal-sized grid cells, each with a value of elevation. Its
simple data structure and widespread availability have made it a
popular tool for land use planning, derivation of geomorphic
features, hydrological modelling, large-scale mapping and tele-
communications (Fisher, 1993; Gao, 1997; Zhou and Liu, 2004).

DEMs, like other spatial data sets, are subject to errors (Fisher
and Tate, 2006; Wechsler and Kroll, 2006). Since DEM error can be
propagated through GIS operations and affect the quality of final
products, it is an important problem to solve (López, 1997).
Several factors affect the quality of DEMs (Chaplot et al., 2006).
A significant source of error can be attributed to data collection.
The accuracy of source data varies with collection techniques,
such as map digitization, active airborne sensors, photogram-
metric methods and field surveying (Erdogan, 2009). Other
sources of error include the interpolation methods for DEM
generation and the characteristics of the terrain surface (Carrara
et al., 1997; Skidmore, 1989). DEM accuracy assessment is usually
undertaken by deriving a measure of DEM accuracy; how close
the DEM’s elevation values are to the true elevations. Measures
such as root mean square error (RMSE) and standard deviation of
ll rights reserved.
the error are frequently used to summarize elevation errors in a
DEM at a global level (Bolstad and Stowe, 1994; Carlisle, 2005;
Wise, 1998). If GIS users are not aware of the DEM errors,
perfectly logical GIS analysis techniques can lead to incorrect
results. In other words, the data may not be fit for use in a certain
context (Fisher, 1993).

The awareness of the importance of DEM accuracy is shown by
the vast number of studies published on the accuracy compar-
isons of interpolation methods and error detections. For example,
Schut (1976) provided an in-depth review of various interpolation
techniques used in generating DEMs and the possible DEM errors
produced during the data processing. Walsh et al. (1987) found
that the total DEM error may be minimized by recognizing both
the inherent errors within input products and operational errors
created by the combinations of input data. Polidori et al. (1991)
introduced the fractal process as a terrain simulation model for
improving DEM accuracy. Gao (1998) provided a comprehensive
analysis on the impact of sampling schemes on DEM accuracy in
constructing DEMs from contour maps and proposed some
suggestions for contour digitization. Rees (2000) presented some
theoretical and practical assessments of the accuracy of inter-
polation techniques, with which DEM can be interpolated to
higher resolutions. Chaplot et al. (2006) investigated the DEM
accuracy estimation in relation to the possible interactions with
spatial scale, landform types, and data density based on different
interpolation methods. Bonk (2007) determined the effect of
input data point designs including random and grid sampling
internally varying in number of input data points on the

www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2009.12.001
mailto:chencf@lreis.ac.cn


ARTICLE IN PRESS

C. Chen, T. Yue / Computers & Geosciences 36 (2010) 717–725718
magnitude and spatial distribution of DEM errors. Aguilar et al.
(2007) found that the accuracy of the DEM generated from
random sampling design is highly correlated with the sampling
density.

In order to solve the error problem in surface modelling, a new
method of surface modelling based on the theorem of surfaces
(SMTS) has been developed. The accuracy of SMTS was assessed in
terms of sampling and interpolation errors (Yue et al., 2007).
However, potential sources of error may be introduced by the
resolution used for surface modelling by interpolation methodol-
ogy. Previous research (Carter, 1990; Armstrong and Martz, 2003)
indicated that DEM resolution plays an important role in terrain
representation, and a low resolution can result in a big accuracy
loss in complex terrains. Such an accuracy loss is named, terrain
representation error (ETR), and the ETR may become a dominant
part of the error in a DEM as the grid interval and terrain
roughness increases (Chang and Tsai, 1991; Huang and Lees,
2005). Therefore ETR should be taken into account when the
accuracy of SMTS and the classical interpolation methods is
assessed in terms of error index at a global level.

The rest of this research is organized as follows. First, we
introduce the theoretical formulation of SMTS. Second, the concept
and the computation of ETR are investigated. Total DEM error is
computed in terms of error propagation theorem. Third, two
examples including a numerical test and a real-world example are
employed to comparatively analyze the simulation accuracy of
SMTS and the classical interpolation methods of IDW, SPLINE and
KRIGING performed in ARCGIS 9.1 in terms of sampling and
interpolation errors and of total DEM error at a global level. At last,
some conclusions and discussion are presented.
2. SMTS

According to the fundamental theory of surfaces, a surface is
uniquely defined by the first fundamental coefficients and the
second fundamental coefficients (Henderson, 1998). The first
fundamental coefficients are used to express how the surface
inherits the natural inner product of R3, in which R3 is the set of
triples (x, y, z) of real numbers (Gray et al., 2006). The coefficients
of the first fundamental form of a surface yield some geometric
properties of the regions and geodesics on the surface. These
geometric properties, that are determined only in terms of the
first fundamental coefficients of a surface, are named the intrinsic
geometric properties. The collection of these geometric properties
forms the subject of the intrinsic geometry of a surface, which
indicates that its properties do not depend on the shape of the
surface, but depend only on the coefficients of the first funda-
mental form. The second fundamental form coefficients reflect the
local warping of the surface, namely its deviation from tangent
plane at the point under consideration (Liseikin, 2004).

Suppose a surface is a graph of a function z¼ f(x,y) and {(xi,yj)}
is a network created by equally orthogonal division of a
computational domain O, finite difference of SMTS can be
formulated as (Yue et al., 2007),
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where E, F, G, L, N are the first and second fundamental coefficients
of a surface, these finite differences can be expressed as,
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The finite difference of Gk
l (k¼11, 22; l¼1, 2) can be

formulated as,
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where h is grid space, (xi, yj)AO\qO is a point in the computational
domain O,fi,j¼gi,j,(xi,yj)AqO is boundary value;fi,j ¼ f i,j,
(xi,yj)AFCO,F are sampling data, ~f i,j is interpolation value in
terms of the sampling values of f i,j, (xi,yj)AFCO.

The matrix formulation of SMTS can be expressed as,

B1f nþ1 ¼ ln1
B2f nþ1 ¼ ln2

(
ð11Þ

where, B1 and B2 represent coefficient matrices of equation (1),
respectively; ln1 and ln2 represent the right-hand vectors of
equation (1), respectively;f nþ1 ¼ ½f nþ1
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T , Mx+2 and My+2 repre-
sent the number of grid cells in the x and y directions,
respectively.

Suppose one sampling point is located at the lattice (xi,yj) in
the computational domain O, the interpolation value should be
equal or approximate to the sampling value at this lattice, so a
constrained equation is added to the Eq. (11) and the formulation
of SMTS can be expressed as,
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, M represents the coefficient matrix of

sampling data, h represents the vector of sampling value.
Considering sufficiently large l, SMTS formulation can be

transformed to the expression as,
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Fig. 1. A 2D profile model describing ETR: (a) Point B is above AC (b) Point B is

below AC .
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Or

Sf nþ1 ¼ tn ð14Þ

where S¼ BT lMT
� 	 B

lM

� �
, tn ¼ BT lMT

� 	 ln

lh

� �
. Therefore, the

computational results of a DEM can be expressed as,

f nþ1 ¼ S�1tn ð15Þ

The parameter l is the weight of the sampling points and
determines the contribution of the sampling points to the
simulated surface. l is a real number or an element , which
means all sampling points have the same weight or different
weights. In a complex region, area affected by a sampling point
is smaller than in a flat region. Therefore, a smaller value of
l is selected in a complex region and a bigger value is selected in a
flat region.

Based on the above fundamental theory, a DEM can be
generated by the following procedures:
(1)
 Conducting interpolation on the computational domain O in
terms of sampling data, from which we can get interpolated
approximate values of the simulated grids.
(2)
 Computing the first and second fundamental coefficients of
SMTS.
(3)
 Calculating Gl
k (k¼11, 12, 22; l¼1, 2), S and tn, respectively.
(4)
 Solving Eq. (15).

(5)
 Repeating (2)–(4) until the simulation results meet the

pre-set accuracy. The accuracy controller can be set as
max

i,j
ð9f n

i,j�f nþ1
i,j 9Þre, where e is an accuracy tolerance.
Fig. 2. A 3D DEM describing ETR.

3. ETR

3.1. The concept of ETR

DEM’s can be generated using different interpolation methods
(Fisher, 1998; Goodchild and Gopal, 1989). DEM accuracy tells
how faithfully the generated DEM represents the true ground
(Thebald, 1989). DEM error can be defined as the elevation
difference between the constructed DEM and the corresponding
true surface (Fisher, 1993). This definition has been accepted as a
general understanding of DEM error. DEM sampling and inter-
polation errors mean the elevation difference between DEM grid
lattices obtained from sampling and interpolation techniques and
the corresponding points on the true ground (Tang, 2000). If all
the sampling and interpolation grids have no errors and the DEM
resolution is infinitely small, the DEM can be regarded as the true
ground surface. However, because of the limitations of computer
processing and storage ability, etc, it is impossible to make the
DEM resolution as high as possible. Therefore, no matter how
small the sampling and interpolation errors are, the derived DEM
is only an approximation to the real-world ground. The informa-
tion loss is due purely to the finite grid interval and using linear
representation for a terrain surface (Huang, 2000). The elevation
discrepancy between the DEM and the true ground surface is
termed DEM ETR that increases as the resolution and terrain
roughness increases. Thus, ETR is considered as a measure of DEM
fidelity and total DEM errors are actually composed of not only
sampling and interpolation errors but also ETRs.

3.2. The algorithm of calculating ETR

Fig. 1 describes the existence of ETR on a 2D profile. The thick
line ABC represents the true ground surface, while A and C are two
adjacent elevation points, free from sampling and interpolation
errors. Because of the linear representation of the true ground
surface with A and C, there exists a discrepancy between AC and
ABC . Suppose a represents the slope at A, and x is a variable,
representing the distance between A and D, ETR of BEcan be
formulated as,

BE ¼ BD�ED ¼ x tana� x2tana
d

ð16Þ

where d represents DEM resolution.
Letting one derivative of BE be equal to zero, we can obtain the

position of D, where BE has the biggest value.

dðBEÞ

dx
¼ tana�2x tana

d
¼ 0; x¼

d

2
ð17Þ

Eq. (17) indicates that at the middle point of AF , it would be
most possible to get the maximum ETR. In terms of this analysis,
the maximum ETR between A and C can be expressed as,

Etrmax ¼HB�
HAþHC

2
ð18Þ

where, HA, HB and HC represent the elevation values at A, B and C,
respectively.

Eq. (18) indicates that when point B is above AC , Etrmax is
positive (Fig. 1a), and when point B is below AC , Etrmax is negative
(Fig. 1b).

Let us extend the ETR to a 3D DEM:
As illustrated in Fig. 2, lu, lb, rb, ru is a regular DEM grid, C00 is

the center of the grid; LU, LB, RB, RU and C are the points on the
ground surface; HLU, HLB, HRU, HRB and HC are the corresponding
elevations at LU, LB, RU, RB and C, respectively. By the same
principle discussed above, the maximum ETR within a grid can be
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Fig. 3. Kernel windows used to calculate ETRs of a DEM: (a) A 3�3 kernel window and (b) a 5�5 kernel window.
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expressed as,

Etrmax ¼HC�
HLUþHLBþHRBþHRU

4
ð19Þ

Assuming a DEM resolution is h, a 3�3 kernel window is
employed to calculate the maximum ETR of every lattice with
formula (20). When the window moves through the whole DEM
cell by cell and calculates the ETR value of each cell, we can derive
an expected ETR matrix with the resolution of 2h (Fig. 3a).

Etri,j ¼Hi,j�
Hiþ1,jþ1þHiþ1,j�1þHi�1,j�1þHi�1,jþ1

4
ð20Þ

If the kernel window is extended to 5�5, 7�7y, a set of DEM
ETRs with the resolutions of 4h, 6hy can be computed
respectively (Tang, 2000) (Fig. 3b). Under a certain resolution,
the root mean square error (RMSE) of ETR matrix (RMSEETR) as an
error index at a global level is calculated as follows:

RMSEETR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi ¼ Row,j ¼ Column

i ¼ 1,j ¼ 1

Etr2
i,j

Row� Column

vuuut
ð21Þ

where, Row and Colum represent the row and column of ETR
matrix, respectively.
3.3. Total DEM error

From what have been discussed above, it can be concluded
that in a DEM, total DEM errors are actually composed of, not only
sampling and interpolation errors, but also ETRs. Sampling and
interpolation errors may be caused by the limitation of sampling
and interpolation technologies, computer processing, storage
ability, etc. ETR is caused by the DEM resolution and the
complexity of a region. Root mean square error (RMSE) which
provides an accuracy index at a global level (Burrough, 1986;
Holmes et al., 2000) can be used to estimate the effect of sampling
and interpolation errors on a DEM (Wechsler and Kroll, 2006). The
RMSE is expressed as,

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ¼ 1

ðfi�sfiÞ
2

N

vuuut
ð22Þ

where, N represents the number of validation points; sfi refers to
the ith simulated or interpolated elevation, and fi represents the
ith known or measured elevation.
Therefore, based on the error propagation theorem, total DEM
error in terms of RMSE (RMSEETD) can be formulated as,

RMSEETD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2

ESIþRMSE2
ETR

q
ð23Þ

where, RMSEESI refers to sampling and interpolation errors in
terms of RMSE, which can be computed with formula (22);
RMSEETRrepresents ETR in terms of RMSE, which can be computed
with formula (21).

Above all, total DEM error including not only sampling and
interpolation errors but also ETR can be regarded as a good criterion
for comprehensively assessing DEM accuracy at a global level.

4. Numerical and real-world tests

4.1. Comparative analysis

In addition to the newly developed SMTS, there are many
classical interpolation methods including IDW, SPLINE and KRIGING
(Blomgren, 1999; Ries, 1993; Robinson, 2006), with which the
performance of SMTS can be compared. In this paper, all the
classical interpolation methods were performed using the module
of 3D analyst in ARCGIS 9.1 with the default parameters. For IDW,
the power is 2, the search radius is variable and the maximum
number of the researched points is 12. For SPLINE, the REGULAR-
IZED option is used, the weight is 0.1, and the number of the
researched points is 12. For KRIGING, ordinary method is selected,
the model of semivariogram is spherical, the searched radius is
variable, and the maximum number of the searched points is 12.

4.2. A numerical test

The canonical surface z¼2sin(px)sin(py)+1 (Fig. 4) was taken
as the test surface, so that the ‘true’ output value can be pre-
determined to avoid uncertainty caused by uncontrollable data
errors. Its computational domain is [0,1]� [0,1]. The RMSEs of ETR
matrixes (RMSEETRs) of different resolutions were calculated with
formulas (20) and (21). The regression model that relates RMSEETR

to resolution was generated with SPSS14.0 (formula (24)), and the
relationship appears to have a non-linear (quadratic) correlation
(Fig. 5).

RMSEETR ¼ 1:57� 10�6
�0:001hþ2:516h2; R2 ¼ 1 ð24Þ

where h represents resolution.
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Fig. 4. Canonical surface.

Fig. 5. Regression model relating RMSEETR to resolution of canonical surface.

Table 1
RMSEESIs of the four interpolation methods of canonical surface.

Resolution SMTS(�10�4) IDW SPLINE KRIGING

1/8 9.72 0.35 0.21 0.37

1/16 5.61 0.45 0.29 0.51

1/32 3.67 0.53 0.34 0.58

1/64 4.57 0.57 0.36 0.62

Table 2
Ratio of RMSEESI of a classical interpolation method to that of SMTS of canonical

surface.

Resolution IDW SPLINE KRIGING

1/8 360.1 216.0 380.7

1/16 802.1 516.9 909.1

1/32 1444.1 926.4 1580.4

1/64 1247.3 787.7 1356.7

Table 3
RMSEETDs of the four interpolation methods of canonical surface.

Resolution SMTS(�10�4) IDW SPLINE KRIGING

1/8 392 0.35 0.21 0.37

1/16 98 0.45 0.29 0.51

1/32 25 0.53 0.34 0.58

1/64 8 0.57 0.36 0.62

Table 4
Ratio of RMSEETD of a classical interpolation method to that of SMTS of canonical

surface.

Resolution IDW SPLINE KRIGING

1/8 8.9 5.4 9.4

1/16 45.9 29.6 52.0

1/32 212.0 136.0 232.0

1/64 712.5 450.0 775.0
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In the computational domain [0,1]� [0,1], 25 points were
evenly sampled from the canonical surface to construct DEMs by
SMTS and the classical interpolators with the resolutions of 1/8,
1/16, 1/32 and 1/64. Because these 25 points are free from
sampling errors, RMSEESI only refers to interpolation error
without sampling error. The RMSEESIs were calculated with
formula (22) (Table 1).

Irrespective of the resolution, SMTS is much more accurate
than the classical interpolation methods (Tables 1 and 2). The
resolution of 1/8 gives SMTS the lowest accuracy. However, the
accuracy of SMTS is still 360.1, 216 and 380.7 times higher than
those of IDW, SPLINE and KRIGING, respectively (Table 2). Under
the resolution of 1/32, SMTS has the highest accuracy, which
is 1444.1 times higher than that of IDW, 926.4 times higher
than that of SPLINE and 1580.4 times higher than that of KRIGING
(Table 2).
Total DEM errors in terms of RMSE (RMSEETDs) were computed
based on formula (23) and the results are shown in Table 3.

In terms of RMSEETD, the simulation results of SMTS are still
more accurate than the classical interpolation methods, but ETR
has a worse influence on the accuracy of SMTS than those of the
classical interpolation methods (Tables 3 and 4). For example, in
terms of RMSEESI (Table 2), under the resolution of 1/16, the SMTS
accuracy is 802.1, 516.9 and 909.1 times higher than those of
IDW, SPLINE and KRIGING, respectively. But SMTS is only 45.9
times higher than that of IDW, 29.6 times of SPLINE and 52 times
of KRIGING in terms of RMSEETD under the same resolution
(Table 4).
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Fig. 6. Location and topography of Dongzhi tableland.
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Under the resolution of 1/64 (Table 1), the RMSEESI of SMTS is
bigger than that of the resolution of 1/32. But when taking the ETR
into account (Table 3), the RMSEETD of SMTS becomes smaller and
smaller with the resolution increasing, which indicates that, ETR
becomes a dominant component of the SMTS errors. Considering
all the DEMs derived from the classical interpolation methods, the
RMSEETD increases with the increasing resolution.

Above all, SMTS is much more accurate than the classical
interpolation methods, and the total DEM error can give
interpolation methods a more comprehensive accuracy evaluation
than the sampling and interpolation errors at a global level.
Fig. 7. Regression model relating RMSEETR to resolution in Dongzhi tableland.

Table 5
RMSEESIs of the four interpolators in Dongzhi tableland (m).

Resolution SMTS IDW SPLINE KRIGING

30 9.33 13.72 13.05 13.96

20 9.60 11.79 10.41 12.64

10 8.86 11.14 9.69 12.28

5 8.79 10.80 9.18 12.15

Table 6
Ratio of RMSEESI of a classical interpolator to that of SMTS in Dongzhi tableland

Resolution IDW SPLINE KRIGING

30 1.47 1.40 1.50

20 1.23 1.08 1.32

10 1.26 1.09 1.39

5 1.23 1.04 1.38
4.3. A real-world example

The Dongzhi tableland located in Gansu province, China was
selected as a real-world test region (Fig. 6). The geographic
coordinates of its central point is 107.88 1E and 36.03 1N. Its
elevation varies from 1283 to 1532 m. Its slope varies from 11 to 851.

The topographic map covering the research region with a scale
of 1:5000 and the contour interval of 25 m was scanned. The
topographic map was enlarged three times to enhance the
digitization accuracy. Contours were traced using the editor
module in ARCGIS 9.1 with elevations as identification labels. The
density of sampled elevations was based on the sinuosity of
contour lines. Hence, more elevations were sampled at sections
with a sharp curvature. The Gauss–Krueger projection, in which
each zone is 31 of longitude in width, was adopted to transform
Beijing geographical coordinates established in 1954 into rectan-
gular Cartesian coordinates for easier calculation and Dongzhi
tableland was projected to the 36th zone. The Huang-Hai
Elevation System established in 1956 was adopted as an elevation
datum. After the transformation of the coordinate system, the
elevation points of contour lines were transformed into scattered
points with the information of coordinates using the Data
Management Tools module in ARCGIS 9.1.

All the points were used to construct a 5 m DEM, which was
used to calculate the ETR matrices with the kernel windows of
different resolutions from 10 to 100 m with the step interval of
10 m. The RMSEETRs were computed to obtain the regression
model relating RMSEETRs to DEM resolutions. The regression
model was generated with SPSS14.0 (formula (25)), and the
relationship appears to have a linear correlation (Fig. 7).

RMSEETR ¼ 0:134hþ1:737; R2 ¼ 1 ð25Þ

where, h represents resolution.
All the scattered elevation points from the contour map were
randomly divided into two groups: one group containing 70% of
the elevations used for DEM generation, the other group for DEM
validation. Based on the elevations used for DEM construction,
DEMs with the resolutions of 5, 10, 20 and 30 m were generated
with SMTS and the three classical interpolation methods. The
RMSEESI of each DEM was calculated with the validation points
(Table 5).
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Irrespective of the DEM resolution, SMTS is more accurate than
the classical interpolators (Table 5). However, the accuracy
difference is less distinct than the case of the numerical test. For
Table 7
RMSEETDs of the four interpolators in Dongzhi tableland (m).

Resolution SMTS IDW SPLINE KRIGING

30 10.97 14.88 14.26 15.10

20 10.56 12.59 11.30 13.39

10 9.40 11.56 10.16 12.67

5 9.11 11.06 9.49 12.39

Table 8
Ratio of RMSEETD of a classical interpolator to that of SMTS in Dongzhi tableland.

Resolution IDW SPLINE KRIGING

30 1.36 1.30 1.38

20 1.19 1.07 1.27

10 1.23 1.08 1.35

5 1.21 1.04 1.36

Fig. 8. 3D shaded relief maps of SMTS and the classical interpolation met
example, compared with the classical interpolation methods, the
resolution of 30 m gives SMTS the highest accuracy (Table 6),
which is only 1.47 times higher than that of IDW, 1.40 times of
SPLINE, and 1.50 times of KRIGING. The accuracy loss may be
caused by location differences between the sampling points and
the corresponding central points of lattices of the simulated
surfaces (Yue and Song, 2008).

The RMSEETDs were calculated with formula (23) (Table 7).
Irrespective of the resolution, SMTS is more accurate than

the classical interpolation methods in terms of RMSEETD (Tables 7
and 8). Column 2 of Table 5 indicates that the resolution of 20 m
gives SMTS a higher accuracy loss than other resolutions. But
when taking the ETR into account (Table 7), the RMSEETD of SMTS
decreases as the resolution increases. Therefore, ETR plays an
important role in the accuracy evaluation.

All the shaded relief maps of the simulated DEM with the
resolution of 10 m were constructed using the four interpolators
to represent the terrain relief of the Dongzhi tableland (Fig. 8).
These maps were made with the same azimuth and altitude
angles of the default values in ARCGIS 9.1. The Azimuth angle
of the light source is expressed in positive degrees from 01 to 3601,
measured clockwise from the north. The default is 3151.
hods in Dongzhi tableland: (a) SMTS (b) IDW (c) SPLINE (d) KRIGING.
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The Altitude angle of the light source above the horizon is
expressed in positive degrees, with 01 at the horizon and 901
directly overhead. The default is 451.

The 3D shaded relief maps indicate that SMTS has a much better
simulation result than those of the classical interpolation methods
(Fig. 8a). The simulation result of the IDW has many abrupt changes
in slope obtained from changes in shades of grays, and is coarser
than that of SMTS (Fig. 8b). The SPLINE method is significantly
influenced by an oscillation problem, especially in the right bottom
area (Fig. 8c). The KRIGING simulation result has many wrinkles and
an obvious peak truncation and pit-fill problem (Fig. 8d).

From what have been discussed above, it can be concluded
that SMTS is more accurate than the classical interpolation
methods and it may be regarded as an alternative interpolator
for DEM construction.
5. Conclusions and discussion

The concept and the computation of ETR are presented and
total DEM error is computed in terms of the error propagation
theorem. Both the numerical test and the real-world example
indicate that SMTS has a higher accuracy than the classical
interpolation methods including IDW, SPLINE and KRIGING
performed in ARCGIS 9.1 in terms of RMSEESI and of RMSEETD. In
the numerical test, the ETR has a worse influence on the accuracy
of SMTS than those of the classical interpolators. In the real-world
example, although SMTS is more accurate than other interpola-
tors, there is a big accuracy loss compared with the numerical
test, which may be caused by location differences between the
sampling points and the corresponding central points of lattices of
the simulated surfaces. Total DEM error including not only
sampling and interpolation errors but also ETR is considered as
a good criterion for DEM accuracy evaluation at a global level.

In addition to presenting a better accuracy assessment of the
DEM product, ETR enables a DEM user to select an appropriate
grid interval for sampling and interpolation based on the ETRs of a
range of grid intervals. Thus, it is recommended that when
constructing DEM, the producer should provide the ETRs of
several candidate grid intervals for user’s choice and assessment.

SMTS must use an equation set to simulate each lattice of a
surface and DEM construction based on SMTS is eventually
transformed to solve a large sparse linear system (Yue et al.,
2008). The traditional direct methods for solving the linear system
indicate that the SMTS computational time is approximately
proportional to the third power of the total number of grid cells in
the computational domain (Saad, 2003; Davis, 2006), which
seriously hampers its use in a broad number of applications. An
adaptive mesh refinement algorithm can select a resolution that is
as coarse as possible while still meeting a defined accuracy to serve a
specific purpose (Berger, 1989; Trottenberg et al., 2001). Thus future
work is focused on the establishment of an adaptive algorithm of
SMTS to reduce its data volume and computational demands.
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