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a b s t r a c t

Process-based crop models are increasingly being used to investigate the impacts of weather

and climate variability (change) on crop growth and production, especially at a large scale.

Crop models that account for the key impact mechanisms of climate variability and are

accurate over a large area must be developed. Here, we present a new process-based general

Model to capture the Crop–Weather relationship over a Large Area (MCWLA). The MCWLA is

optimized and tested for spring maize on the Northeast China Plain and summer maize on

the North China Plain, respectively. We apply the Bayesian probability inversion and a

Markov chain Monte Carlo (MCMC) technique to the MCWLA to analyze uncertainties in

parameter estimation and model prediction and to optimize the model. Ensemble hindcasts

(by perturbing model parameters) and deterministic hindcasts (using the optimal para-

meters set) were carried out and compared with the detrended long-term yields series both

at the crop model grid (0.58 � 0.58) and province scale. Agreement between observed and

modelled yield was variable, with correlation coefficients ranging from 0.03 to 0.88 (p < 0.01)

at the model grid scale and from 0.45 to 0.82 ( p < 0.01) at the province scale. Ensemble

hindcasts captured significantly the interannual variability in crop yield at all the four

investigated provinces from 1985 to 2002. MCWLA includes the process-based representa-

tion of the coupled CO2 and H2O exchanges; its simulations on crop response to elevated CO2

concentration agree well with the controlled-environment experiments, suggesting its

validity also in future climate. We demonstrate that the MCWLA, together with the Bayesian

probability inversion and a MCMC technique, is an effective tool to investigate the impacts

of climate variability on crop productivity over a large area, as well as the uncertainties.
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avai lab le at www.sc iencedi rec t .com

journal homepage: www.elsevier.com/locate/agrformet
1. Introduction

In order to establish food security warning systems, predict

regional food production in future, and examine the options
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for adaptations, the impacts of weather and climate variability

(change) on crop growth and productivity must be simulated

at a large scale. Crop models are increasingly being used on a

large spatial scale, often coupled with general circulation
).
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Nomenclature

a leaf respiration as a fraction of Rubisco capacity

Adt daytime assimilation rate

Agd daily gross photosynthesis

And daily leaf net photosynthesis

APAR daily integral of absorbed PAR

ca ambient mole fraction of CO2

cc carbon content of biomass

cp specific heat of moist air

Drmax crop maximum root depth

E daily evapotranspiration

Edemand atmospheric demand water

Eeq equilibrium evapotranspiration

Esupply crop- and soil-limited water supply function

Evp evaporation from the soil evaporation layer

fPAR fraction of incoming PAR intercepted by green

vegetation

ftemp temperature inhibition function limiting photo-

synthesis at low and high temperatures

f(z) specific root fraction

F flooding stress factor

Fcr constant to adjust the damage degree of a flood-

ing event

gc canopy conductance

gm empirical parameter in calculating Edemand

gmin minimum canopy conductance

gpot non-water-stressed potential canopy conduc-

tance

h day length in hours

HI harvest index

Ic precipitation interception storage parameter

It precipitation interception by the leaf canopy

kb light extinction coefficient

kc kinetic parameter with a Q10 dependence on

temperature

ko kinetic parameter with a Q10 dependence on

temperature

kperc soil-texture-dependent percolation rate at field

capacity

LAI leaf area index

LAImax maximum leaf area index

LAIdg mean rate of LAI decrease after flowering to

maturity

mc moisture content of grain

mr an empirical parameters in calculating main-

tenance respiration

Mlt maximum melt rate of the snow pack

pa ambient partial pressure of CO2

pi intercellular partial pressure of CO2 (Pa)

pO2 ambient partial pressure of O2 (Pa)

pre atmospheric pressure

P daily total precipitation

PAR photosynthetically active radiation

Per daily percolation

Rd daily leaf respiration

Rg growth respiration

Rm maintenance respiration

Rm25 maintenance respiration at 25 8C

Rn daily total net radiation flux

Rr:l relative growth rate of root depth and leaf area

index

s rate of increase of saturated vapour pressure

with temperature

S soil water stress factor

Scr critical threshold value of S to affect growth

Sle scaling factor for absorbed PAR at ecosystem

versus leaf scale

St precipitation interception storage by leaf canopy

t time

tsec number of daylight seconds per day

T̄ mean daily temperature

Tb base temperature

TDD thermal time

Teff effective temperature

Tm maximum temperature

To optimum temperature

Tsnow mean daily temperature below which precipi-

tation falls as snow

TT transpiration rate

TTmax maximum transpiration rate

TTpot potential transpiration

VEF root extraction front velocity

Vm maximum daily rate of net photosynthesis

VPD vapour pressure deficit

W aboveground biomass

Wep volumetric water content of the evaporation

layer, expressed as a fraction of its available

water holding capacity

Wo the initial biomass at emergence

Ws volumetric water content of the soil layer

expressed as a fraction of its available water

holding capacity

Wsow threshold fraction of soil water for crop sowing

Y cumulative fraction of roots between the soil

surface and depth z

Yd crop yield

Ygp yield gap parameter

z root depth below soil surface

Greek letters

G* CO2 compensation point

a effective ecosystem-level quantum efficiency

ag growth respiration parameter

am empirical parameter in calculating Edemand

b empirical parameter that determines the root

distribution with depth

e molecular weight ratio of water vapour/dry air

g psychrometric constant

l latent heat of vaporization of water

li parameter balancing pi and pa

u shape parameter that specifies the degree of

colimitation by light and Rubisco activity

r density of air

t a kinetic parameter with a Q10 dependence on

temperature

j Priestley–Taylor coefficient
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models (e.g., Osborne et al., 2007). However, most dynamic

crop models are typically designed to simulate crop growth,

yield, and resource utilization at the scale of a homogeneous

plot, with relatively high input data requirements. There is a

substantial mismatch between spatial and temporal scales of

available data and crop simulation models (Hansen and Jones,

2000; Challinor et al., 2004). Different input scales can produce

very different simulated yield impacts (Mearns et al., 2001).

To simulate crop growth and productivities over a large

area, previous studies adapted process-based models to

predict regional yield, such as crop model scaling approaches

(Hansen and Jones, 2000) and the yield correction approach

(Jagtap and Jones, 2002). Other studies adapted empirical or

semi-empirical models with low input data requirements,

such as a rice simulation model SIMRIW (Horie et al., 1995), the

FAO method (Doorenbos and Kassam, 1979; Martin et al., 2000;

Fischer et al., 2002; Tao et al., 2003), and remote-sensing-based

production efficiency models (Tao et al., 2005). Challinor et al.

(2004) tried to combine the benefits of more empirical

modelling methods (low input data requirements, validity

over large areas) with the benefits of a process-based approach

(the potential to capture variability due to different subsea-

sonal weather patterns and hence increased validity under

future climates), resulting in a general large-area model

(GLAM) for annual crops. However, like many other crop

models, GLAM did not include several key biophysical

processes that are important in determining crop response

to climate variability, particularly in future climate. For

example, there is an need for more process-based modelling

of the impact of vapour pressure deficit (VPD), and the

combined effects of temperature and elevated CO2 concentra-

tion ([CO2]) on photosynthesis, transpiration and water use

efficiency (Tubiello et al., 2007a).

Extensive controlled-environment experiments such as

the Free-Air Concentration Enrichment experiments (e.g.,

Kimball et al., 1995; Ainsworth et al., 2002; Leakey et al., 2004;

Kim et al., 2006, 2007) have showed that increases in both

mean and extremes of temperature and elevated [CO2], under

predicted climate change scenarios, can impact the growth

and development of crops in several ways. Sustained

temperature increases over the season will change the

growing period of a crop (e.g., IPCC, 2001), whereas short

episodes of high temperature during the critical flowering

period of a crop can impact yield independently of any

substantial changes in mean temperature (e.g., Matsui and

Horie, 1992; Wheeler et al., 2000). Temperature is also a key

determinant of evaporative and transpirative demand (e.g.,

Priestley and Taylor, 1972). Crops sense and respond directly to

rising atmospheric CO2 through increased photosynthesis and

reduced stomatal conductance (Jarvis and William, 1998). All

other effects of elevated [CO2] on plants and ecosystems are

derived from these two fundamental responses (Long et al.,

2004). Rising CO2 would increase the photosynthesis rate,

especially for C3 crops (Kimball et al., 1995). Although C4 crops

may not show a direct response in photosynthesis activity, an

indirect increase in water use efficiency in water-stressed

environments via reduction in stomatal conductance may still

increase yield (Long et al., 2004). Under elevated CO2, stomatal

conductance in most species will decrease, which may result

in less transpiration per unit leaf area (Sionit et al., 1984;
Atkinson et al., 1991). Water loss by transpiration is not only

affected by the conductivity of the stomata, but also by the

driving forces for exchange of the water vapour from the leaf

surface to the surrounding atmosphere (i.e., VPD; McNaughton

and Jarvis, 1991; Kimball et al., 1995). With all other factors

being equal, the existing VPD between stomatal cavity and

surrounding air – the boundary layer – will increase at a

reduced transpiration rate and feedback to stimulate tran-

spiration.

Although most dynamic global vegetation models have

accounted for such key response mechanisms by coupling

photosynthesis and stomatal conductance (Cramer et al.,

2001), many crop models often simulate the key responses of

crop to climate change (such as CO2 fertilization effects and

change in transpiration) using a proportionality factor (Long

et al., 2006; Tubiello et al., 2007b). The important considera-

tion is that experimentally observed crop physiological

responses to climate change variables at plot and field

levels (e.g. Kimball et al., 1995; Ainsworth et al., 2002; Leakey

et al., 2004; Kim et al., 2006, 2007) are too simplified in current

crop models (Tubiello et al., 2007a). As a consequence, the

potential for negative surprises is not fully explored, thus

reducing the level of confidence in regional and global

projections (Tubiello et al., 2007a). It is thus imperative to

continue to advance the fundamental knowledge of crop

species responses to climate change, reduce uncertainties in

impact projections, and assess future risks (Tubiello et al.,

2007a).

Here, we develop a new process-based Model to capture

the Crop–Weather relationship over a Large Area (MCWLA).

The MCWLA is designed to investigate the impacts of

weather and climate variability on crop growth and pro-

ductivity at a large scale. Toward this aim, we tried to

capture the interannual variability in observed crop yield

and water use by accounting for subseasonal variability in

weather and crop responses. Most importantly, the MCWLA

also simulates crop response to elevated [CO2] and high

temperature by adopting photosynthesis–stomatal conduc-

tance coupling. In the meantime, like GLAM (Challinor et al.,

2004), the impacts on yield due to factors other than weather

(e.g., pests, disease, management factors) are modelled in a

simplified way.

We apply the Bayesian probability inversion and a Markov

chain Monte Carlo (MCMC) technique to the MCWLA to

analyze uncertainties in parameter estimation and model

prediction and to optimize the model. Ensemble hindcasts (by

perturbing model parameters) and deterministic hindcasts

(using the optimal parameters set) were carried out and

compared with the detrended long-term yields series both at

the crop model grid and the province scale.

The MCWLA is a general crop model. In this study, the

model is optimized and tested for spring maize in the

Heilongjiang and Jilin provinces on the Northeast China Plain

and summer maize in the Henan and Shandong provinces on

the North China Plain, respectively (Fig. 1). Maize (Zea mays) is

the most widely cultivated C4 crop ranking as the third most

produced food crop in China and the world. Any effects of

increasing temperature and elevated [CO2] on maize are likely

to have significant consequences in terms of global food

production (Leakey et al., 2004; Tao et al., 2008a). Extension to



Fig. 1 – Maize cultivation fraction in China at 0.58 T 0.58 grid resolution and the provinces and grids analyzed in this study.
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other crop and/or regions can proceed along similar lines to

the calibration described in Section 3.
2. Model description

2.1. Growth and development

MCWLA simulates crop growth and development in a daily

time-step. As in most crop models, growing degree-days

provide the driving force for the processes of canopy

development, flowering, and maturity. As Challinor et al.

(2004), the crop is planted either on a specified date or on the

first day that the soil moisture exceeds a given fraction of the

maximum available soil water (Wsow) within a sowing

window. If the threshold is not reached within the sowing

window (20 days in this study) then the crop is sowed
@LAI

@t
¼

Teff � Tb

TDD3 � TDD0

� �
LAImaxYgpmin

S
Scr
;1

� �
min

F
Fcr
; 1

� �
i � 3

@LAIdg

@t

� �
max 1þ 1� S

Scr

� �� �
; 1

� �
max 1þ F

Fcr

� �
; 1

� �
i>3

8>><
>>:

(3)
regardless. From the planting date (pd), the thermal time

(TDDi) elapsed after a given development stage i is given by

TDDi ¼
Xti

t¼pd

ðTeff � TbÞ (1)

where t is the time, Teff is the effective temperature, Tb is the

base temperature below which development ceases, and i is

the development stage number (equal to 0 from sowing

to emergence, 1 from emergence to the beginning floral

initiation, 2 from the beginning floral initiation to the end

floral initiation, 3 from the end floral initiation to flowering,

and 4 from flowering to maturity). Development stage i com-

pletes after a specified duration TDDi has elapsed; and harvest

occurs at maturity.
As in GLAM (Challinor et al., 2004), the effective tempera-

ture, Teff, is defined as follows using cardinal temperatures Tb,

To, and Tm, where the subscripts denote base, optimum, and

maximum temperature, respectively:

Teff ¼

T̄ Tb � T̄ � To

To � ðTo � TbÞ
T̄� To

Tm � To

� �
To < T̄<Tm

Tb T�Tm; T̄<Tb

8>><
>>:

(2)

where T̄ denotes mean daily temperature.

Previous crop modelling studies have suggested the

expansion of leaf area be modelled independently of leaf

biomass (Horie et al., 1995; Jamieson and Semenov, 2000;

Bannayan et al., 2005). In MCWLA, the growth of the crop leaf

area is determined as follows, which is improved from the

GLAM (Challinor et al., 2004):
where LAImax is the maximum leaf area index (LAI) of the crop.

The soil water stress factor, S, is

S ¼ TT

TTpot
(4)

which begins to affect growth at values less than the critical

threshold value Scr, TT and TTpot are the rates of transpira-

tion and potential transpiration, respectively. F is the flood-

ing stress factor; its value increases by 1.0 when one

flooding event occurs (defined as soil water being above soil

water capacity for 3 continuous days) from sowing to matur-

ity. Fcr is a parameter to adjust the damage extent of one

flooding event. LAIdg is the mean rate of LAI decrease after

flowering to maturity. Ygp is the yield gap parameter, used to
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reduce LAI from the physical value to an effective value,

which accounts for the mean effects of pests, diseases, and

non-optimal management, as in the GLAM (Challinor et al.,

2004).

The roots grow according to the following equations:

@VEF

@LAI
¼ Rr:l

Drmax

LAImax
(5)

where VEF is the extraction front velocity, Drmax is the crop-

specific maximum root depth, and Rr:l is a parameter

to describe the relative growth rate of root depth and LAI.

The specific root fraction f(z) is derived from an asymptotic

root distribution proposed by Gale and Grigal (1987):

Y ¼ 1� bZ (6)

where Y is the cumulative fraction of roots between the soil

surface and depth z (cm). b is an empirical fitting parameter

that determines the root distribution with depth. A higher b

value gives rise to a larger proportion of roots at deeper depths

relative to low b values. The specific root fraction function f(z)

is the derivative of Eq. (6) with respect to soil depth z and is

expressed as

fðzÞ ¼ @Y
@z
¼ @

@z
ð1� bzÞ ¼ �b2Inb (7)

In practice, the b value is estimated from the rooting depth z

(cm) after Li et al. (2006):

b ¼ 0:01
1
z

(8)

Eq. (8) is derived based on the assumption that the total root

fraction from the soil surface to the rooting depth z is 0.99

[because Eq. (6) is asymptotic, the b value cannot be derived if

the total root fraction is exactly 1.0].

2.2. Soil water balance

Generally, soil hydrology is modelled following the semi-

empirical approach of Haxeltine and Prentice (1996a), which

was simplified from the model developed by Neilson

(1995). In the MCWLA, the soil profile is split into 12 soil

layers with a fixed thickness of 15 cm. The water content of

each layer is updated daily taking into account snowmelt,

percolation, rainfall, evapotranspiration, and runoff. Pre-

cipitation falls as rain or snow depending on whether the

daily air temperature is above or below Tsnow (�2 8C). Above

this threshold the snow pack begins to melt at a maximum

rate of

Mlt ¼ ð1:5þ 0:007PÞðT̄� TsnowÞ (9)

where P is daily total precipitation.

Precipitation interception (It) by the leaf canopy is esti-

mated as Kergoat (1998):

It ¼ Eeqj min
St

Eeqj

� �
; 0:99

� �
(10)
where Eeq is the equilibrium evapotranspiration, j is Priestley–

Taylor coefficient, and St is the interception storage by the leaf

canopy, estimated by

St ¼min b P; ðIcLAIPÞ c (11)

where Ic is the interception storage parameter. Experimental

results from several sites around the world, including vege-

tated surfaces and large water bodies (lake and oceans), gave j

values in the range of 1.08 � 0.01 to 1.34 � 0.05, with an aver-

age of 1.26 (Priestley and Taylor, 1972).

Evaporation from the soil evaporation layer (defined as the

upper 20 cm of soil profile), Evp, is estimated as in the CERES

models (Ritchie et al., 1988):

Evp ¼
EeqjWepð1� 0:43LAIÞ LAI < 1
EeqWep expð�0:4LAIÞ LAI� 1

�
(12)

where Wep is the volumetric water content of the evaporation

layer, expressed as a fraction of its available water holding

capacity.

Daily percolation (Per) from one soil layer to the next is

calculated using the empirical relationship of Neilson (1995):

Per ¼ kpercW2
s (13)

where kperc represents the soil texture dependent percolation

rate (mm d�1) at field capacity and Ws is the volumetric water

content of the soil layer expressed as a fraction of its available

water holding capacity. Surface runoff and drainage are cal-

culated as the excess water above field capacity in the first

layer and all other layers, respectively.

Daily evapotranspiration (E) is calculated as the minimum

of a crop- and soil-limited supply function (Esupply) and the

atmospheric demand (Edemand):

E ¼minðEsupply; Edemand Þ (14)

where Esupply is the product of crop-root-weighted soil moist-

ure availability and a maximum transpiration rate, TTmax. The

percentage of water extracted by crop roots at the upper,

second, third, and bottom quarter of the root zone follows a

40/30/20/10 per cent water extraction pattern (SCS, 1991).

Edemand is calculated following Monteith’s empirical relation

between evaporation efficiency and surface conductance

(Monteith, 1995; Haxeltine and Prentice, 1996a):

Edemand ¼ Eeqam 1� exp
�gpot

gm

� �� �
(15)

where gpot is the non-water-stressed potential canopy con-

ductance calculated by the photosynthesis routine, and gm

and am are empirical parameters (Monteith, 1995). Eeq is

calculated from latitude, temperature, and fractional

sunshine hours, using a standard method based on the

Prescott equation (Jarvis and MacNaughton, 1986; Prentice

et al., 1993):

Eeq ¼
½s=ðsþ gÞ�Rn

l
(16)
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where Rn is the daily total net radiation flux (MJ m�2 d�1), g is a

psychrometric constant (kPa 8C�1), l is the latent heat of

vaporization of water (MJ kg�1), and s is the rate of increase

of saturated vapour pressure with temperature (kPa 8C�1):

g ¼ cp pre

el
� 10�3 (17)

l ¼ 2:501� ð2:361� 10�3ÞT̄ (18)

s ¼ 2:5� 103 exp½17:27T̄=ð237:3þ T̄Þ�
ð237:3þ T̄Þ2

(19)

where cp is the specific heat moist air at constant pressure

(kJ kg�1 8C�1), pre is atmospheric pressure (kPa), and e is the

molecular weight ratio of water vapour/dry air.

2.3. Photosynthesis–stomatal conductance coupling and
transpiration

In the MCWLA, we use the robust, process-based represen-

tation of the coupled CO2 and H2O exchanges in the Lund–

Postdam–Jena (LPJ) dynamic global vegetation models

(Haxeltine and Prentice, 1996a,b; Sitch et al., 2003), which

was later used for agriculture (Bondeau et al., 2007). The

Farquhar photosynthesis model (Farquhar et al., 1980;

Farquhar and von Caemmerer, 1982), as generalized for

global modelling purposes by Collatz et al. (1991, 1992),

underlies the model. The strong optimality hypothesis

(Dewar, 1996; Haxeltine and Prentice, 1996b; Prentice

et al., 2000) is assumed to apply; the nitrogen content and

Rubisco activity of leaves are assumed to vary both sea-

sonally and with canopy position so as to maximize net

assimilation at the leaf level.

The daily integral of absorbed photosynthetically active

radiation (PAR), APAR, is calculated following Haxeltine and

Prentice (1996a):

APAR ¼ PAR fPARSle (20)

where Sle is a scaling factor for absorbed PAR at the ecosystem

versus leaf scale; fPAR is the fraction of incoming PAR inter-

cepted by green vegetation and is estimated by

fPAR ¼ 1� expð�kbLAIÞ (21)

where kb is a light extinction coefficient.

For C3 plant assimilation, daily gross photosynthesis, Agd

(g C m�2 d�1), is given by

Agd ¼ APARc1½1� sc� (22)

Daily leaf net photosynthesis, And (g C m�2 d�1), is given by

And ¼ APAR
c1

c2

� �
½c2 � ð2u � 1Þs� 2ðc2 � usÞsc� (23)

where u is a shape parameter that specifies the degree of

colimitation by light and Rubisco activity (Haxeltine and

Prentice, 1996a,b). The terms sc, s, c1, and c2 are given by
sc ¼ 1� c2 � s
c2 � us

� �0:5

(24)

s ¼ 24
h

� �
a (25)

c1 ¼ a f temp

pi � G �
pi þ 2G �

(26)

c2 ¼
pi � G �

pi þ kcð1þ pO2=koÞ
(27)

where h is the day length in hours, a is a constant (leaf

respiration as a fraction of Rubisco capacity), a is the effective

ecosystem-level quantum efficiency, and ftemp is a tempera-

ture inhibition function limiting photosynthesis at low and

high temperatures (Larcher, 1983). G* is the CO2 compensation

point given by

G � ¼
pO2

2t
(28)

where pO2 is the ambient partial pressure of O2 (Pa). pi is the

intercellular partial pressure of CO2 (Pa), given by

pi ¼ li pa (29)

where pa is the ambient partial pressure of CO2 and li is a

parameter. Parameters t, ko, and kc are kinetic parameters

with a Q10 dependence on temperature (Brooks and Farquhar,

1985; Collatz et al., 1991).

An appropriate simplification of the model (with different

values for a and a and saturating pi) is applied for plants with

C4 physiology (Haxeltine and Prentice, 1996a). Eqs. (23)–(39)

describe the biochemical dependence of total daily net

assimilation on pi and environmental variables.

The daytime assimilation rate Adt is also related to pi
through the CO2 diffusion gradient between the atmosphere

and intercellular air spaces:

gc ¼ gmin þ
1:6Adt

cað1� liÞ
(30)

where gmin is the minimum canopy conductance and ca is the

ambient mole fraction of CO2 (pa = pre	ca). Adt is obtained from

And by addition of nighttime respiration:

Adt ¼ And þ
1� h

24

� �
Rd (31)

where Rd is daily leaf respiration in g C m�2 d�1, and scaled to

Vm, the maximum daily rate of net photosynthesis, by

Rd ¼ aVm (32)

The optimal value forVm is calculated by optimizing Eq. (23)

using the constraint @And/@Vm = 0 resulting in the following

equation for Vm (g C m�2 d�1):

Vm ¼
1
a

� �
c1

c2

� �
½ð2u � 1Þs� ð2us� c2Þsc�APAR (33)

Under non-water-stressed conditions, maximum values of

li are assumed; And is calculated from Eq. (23) and gc is derived

from Eq. (30). The value for canopy conductance thus obtained

is the potential canopy conductance, gpot, required to derive
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demand-limited E in Eq. (15). If water supply limits transpira-

tion, Eqs. (15), (23) and (30) are solved simultaneously to yield

values of li and gc consistent with the transpiration rate.

By assuming the leaf surface temperature is equal to

surface atmospheric temperature, as Sellers et al. (1996), the

photosynthesis-related TTpot and TT are calculated as

TTpot ¼
tsecðgpot � gminÞVPDrcp

g
(34)

TT ¼
tsecðgc � gminÞVPDrcp

g
(35)

where tsec is the number of daylight seconds per day and r is

the density (kg m�3) of air.

2.4. Biomass accumulation and yield formation

Biomass (W in g C m�2) increases from the initial biomass at

emergence (Wo) is determined by

@W
@t
¼ Agd � Rm � Rg (36)

where Rm is maintenance respiration and Rg is growth

respiration. Following (Hunt, 1994; Tao et al., 2005), Rm are

given by

Rm ¼ Rm25
W

W þmr

� �
QðT̄�25Þ=10

10 (37)

where Rm25 is the maintenance respiration at 25 8C; mr is an

empirical parameters; temperature dependent Q10 for main-

tenance respiration is modelled as a function of temperature

following Tjoelker et al. (2001) as

Q10 ¼ 3:22� 0:046T̄ (38)

Rg is given by

Rg ¼maxðagðAgd � RmÞ;0Þ (39)

where ag is growth respiration parameter.

Biomass is transferred into yield, Yd (g m�2), as Lobell et al.

(2002), using:

Yd ¼ W
1�mc

ccHI (40)

where mc is the moisture content of grain, cc is carbon content

of biomass, and HI is the harvest index. As in the GLAM

(Challinor et al., 2004), for i � 3 HI = 0, and for i > 3

@HI

@t
¼ constant (41)

3. Parameter calibration, uncertainties, and
optimization

3.1. Method

The Bayesian probability inversion and an MCMC technique

have been demonstrated as an effective method to synthe-
size information from various sources for analyzing model

uncertainties and optimizing model parameters (Knorr and

Kattge, 2005; Xu et al., 2006; Iizumi et al., in press). Here

the technique was applied to the MCWLA to analyze

uncertainties of parameters and simulated crop yields.

We calibrated the MCWLA for spring maize at the 0.58 � 0.58

grid of Harbin (Fig. 1) using the statistical datasets of

phenology (planting date, flowering date and maturity

date) and yields from 1985 to 1996. Likewise, we calibrated

the MCWLA for summer maize at the 0.58 � 0.58 grid of

Zhengzhou (Fig. 1) using the observed datasets of phenology

and yields from 1995 to 2002.

3.2. Datasets

The MCWLA requires daily weather inputs for mean tem-

perature, precipitation, vapour pressure, and fractional

sunshine hours. In this study, the MCWLA was run at each

0.58 � 0.58 grid with maize cultivation fraction �0.05 across

four major production provinces: Heilongjiang, Jilin, Henan,

and Shandong (Fig. 1). Monthly data on mean temperature,

vapour pressure, and sunshine hours for the 0.58 � 0.58

resolution grids were obtained from the climate research

unit in University of East Anglia, U.K. (Mitchell and Jones,

2005). The monthly means were interpolated to daily values

using spline interpolation (Press et al., 1992). Daily precipita-

tion at 0.58 � 0.58 resolution grids was obtained from the

APHRODITE project (Asian Precipitation–Highly-Resolved

Observational Data Integration Towards Evaluation of the

Water Resources), which develops state-of-the-art daily

precipitation datasets with high-resolution grids (0.258 and

0.58) for Asia. The datasets were developed primarily with

data obtained from a rain-gauge observation network (Xie

et al., 2007).

Soil texture and hydrological properties data were based on

the FAO soil dataset (Zobler, 1986; FAO, 1991), as in LPJ

dynamic global vegetation models (Sitch et al., 2003). Soil

parameters include the soil-texture-dependent percolation

rate (mm d�1) at field capacity (kperc) and available volumetric

water holding capacity (i.e., the water holding capacity at field

capacity minus water holding capacity at the wilting point,

expressed as a fraction of soil layer depth).

Yearly district-, county-, or subprovince-level (usually

including five to eight counties) data on maize yield and

growing area were obtained from the statistical yearbook of

each county or province. Yearly maize phenology at the

grids of Harbin and Zhengzhou, including planting, flower-

ing, and harvest dates, were obtained from the agricultural

meteorological stations in Harbin and Zhengzhou (Tao et al.,

2006). Yearly growing-area-weighted yields at some 0.58 �
0.58 grids (Fig. 1) were calculated from their district-level

data on growing area and yield. Yearly growing-area-

weighted yields for the Heilongjiang, Jilin, Henan, and

Shandong provinces (Fig. 1) were calculated from the

county- or subprovince-level data on growing area and

yield. The growing-area-weighted yields at the 0.58 � 0.58

grids and provinces were detrended to produce yield data at

the production technology of the base year, and these data

(referred to as ‘observed yields’) were used in the model

calibration and evaluation procedure.



Table 1 – Selected model parameters prior intervals, 97.5% high-probability intervals (lower limit, upper limit), mean
estimates, standard deviation, and the optimal parameter set at the grid Harbin for spring maize [Zhengzhou for summer
maize].

Parameters Prior interval 97.5% high-probability
interval

Mean Standard
deviations

Parameter value in
the optimal set

Phenological parameters

Tb (8C) 5–15[5–15] 5.9–9.5[7.9–10.0] 7.7[8.9] 1.2[0.6] 9.6[8.9]

To (8C) 20–31[20–31] 23.0–30.8[27.7–30.9] 26.9[29.5] 2.5[0.9] 23.3[30.2]

Tm (8C) 31–36[31–36] 31.1–35.9[31.1–35.9] 33.6[33.6] 1.5[1.4] 35.0[35.3]

TDD0 (degree-days) 50–200[80–200] 57.8–197.9[83.3–197.6] 131.7[147.6] 42.3[33.8] 151.9[172.0]

TDD1 (degree-days) 200–800[200–600] 357.3–786.9[273.6–581.5] 618.2[455.0] 124.6[86.4] 669.1[587.5]

TDD2 (degree-days) 500–1000[600–900] 504.7–786.9[603.1–792.9] 627.6[676.7] 81.8[56.8] 631.3[644.3]

TDD3 (degree-days) 700–1200[800–1200] 803.7–1113.7[928.4–1059.5] 948.8[994.1] 100.3[34.6] 796.7[973.0]

TDD4 (degree-days) 1200–1800[1400–1800] 1330.0–1791.3[1590.4–1788.7] 1560.1[1695.0] 153.0[55.3] 1304.5[1710.9]

Light, water use, and yield formation parameters

Ygp 0.2–1.0[0.2–1.0] 0.26–0.99[0.30–0.98] 0.66[0.71] 0.21[0.19] 0.32[0.45]
@HI
@t 0.002–0.02[0.002–0.02] 0.004–0.009[0.009–0.019] 0.007[0.015] 0.002[0.003] 0.008[0.018]

Rr:l 0.2–5.0[0.2–5.0] 0.43–4.93[0.86–4.92] 2.97[3.11] 1.36[1.16] 0.32[3.99]

Scr 0.2–0.8[0.2–0.8] 0.22–0.78[0.21–0.79] 0.47[0.49] 0.17[0.17] 0.26[0.54]

Sle 0.2–0.8[0.2–0.8] 0.25–0.79[0.28–0.73] 0.52[0.44] 0.15[0.12] 0.46[0.47]

a 0.033–0.073[0.033–0.073] 0.03–0.07[0.03–0.07] 0.05[0.05] 0.01[0.01] 0.058[0.04]

TTmax (mm m�2 d�1) 3.0–15.0[3.0–15.0] 4.37–14.80[5.82–14.88] 10.31[11.55] 3.03[2.52] 6.42[14.39]

gm 2.0–10.0[2.0–10.0] 5.15–9.93[6.73–9.99] 8.07[9.18] 1.33[0.86] 9.64[9.24]

li 0.2–0.6[0.2–0.6] 0.21–0.58[0.21–0.54] 0.39[0.31] 0.12[0.09] 0.21[0.30]

Rm25 (g C m�2 d�1) 0.2–0.9[0.2–0.9] 0.21–0.89[0.21–0.85] 0.55[0.48] 0.20[0.19] 0.38[0.22]

mr (g C m�2) 10.0–100.0[10.0–100.0] 12.46–98.38[13.56–98.24] 57.56[61.91] 25.88[25.28] 17.10[69.30]

ag 0.1–0.5[0.1–0.5] 0.11–0.49[0.10–0.45] 0.31[0.26] 0.11[0.10] 0.15[0.34]

Wo (g C m�2) 0.01–0.2[0.01–0.2] 0.01–0.19[0.01–0.19] 0.11[0.10] 0.05[0.06] 0.19[0.13]
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3.3. Application of Bayes’ theorem

A general description of the Bayesian probabilistic inversion is

given by Bayes’ theorem (e.g., Tarantola, 1987; Leonard and

Hsu, 1999; Gill, 2002) in the form of

pðc=ZÞ ¼ pðZ=cÞpðcÞ
pðZÞ (42)

where p(c) is the prior probability density function (PDF) repre-

senting prior knowledge about parameter c, p(Z/c) is the con-

ditional probability density of observations Z on c (also called

the likelihood function of parameter c), p(Z) is the probability of

observations Z, and p(c/Z) is the posterior probability density

function (PPDF) of parameter c. The theorem states that the

posterior information of model parameter c represented by p(c/

Z) can be obtained from the prior information represented by

p(c) and the observed information given by p(Z/c). p(c/Z) is often

written in the following form:

pðc=ZÞ/ pðZ=cÞpðcÞ (43)

that is, p(c/Z) is proportional to p(Z/c)p(c).

From the Bayesian viewpoint, p(c/Z) represents the solution

to an inverse problem because it gives a probabilistic

description of parameter c over the parameter space. In the

context of this study, the PPDF p(c/Z) of model parameter c can

be obtained from prior knowledge of parameter c represented

by a prior PDF p(c) and information contained in the datasets of

historical crop phenology and yields series represented by a

likelihood function p(Z/c). To apply Bayes’ theorem, after Xu

et al. (2006), we first specified the prior PDF p(c) by giving a set of

limiting intervals for parameter c, then constructed the
likelihood function p(Z/c)based on the assumption that errors

in the observed data followed Gaussian distributions.

We select the model parameters important for crop

phenology, water use, and yield formation (Table 1). The prior

PDF p(c) of parameters was specified as a uniform distribution

over the intervals as shown in Table 1. These limits are our

prior knowledge about the approximate ranges of the

parameters. Better prior knowledge on the parameters should

result in more accurate estimates; otherwise we would rather

use the weak limits to be more objective and general. We

assume a uniform distribution p(c) for parameter c with an

emphasis on the equal probability of all parameter values

occurring within the limits. This may be the best prior to

choose in the absence of any other knowledge regarding

parameter distributions.

The likelihood function was specified according to dis-

tributions of observation errors. Error e(t) in each observation

Z(t) at time t is expressed by

eðtÞ ¼ ZðtÞ � XðtÞ (44)

where X(t) is the modelled value. For the three datasets used in

the study (i.e., yearly observations of flowering date, maturity

date, and yield), e(t) is expanded as:

eðtÞ ¼ ½e1ðtÞ; e2ðtÞ; e3ðtÞ�T (45)

Corresponding to each modelled variable, there is one

random error component ei(t) = Zi(t) � Xi(t). We assumed that

e(t) followed a multivariate Gaussian distribution with a zero

mean. This assumption is commonly made in many studies

(Braswell et al., 2005; Raupach et al., 2005), mostly because a
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Gaussian distribution in general can approximate errors of

various sources well due to the central limit theorem (Von

Mises, 1964). With the Gaussian distribution, the PDF of e(t) at

time t is given by

PðeðtÞÞ/exp �1
2

ZðtÞ � XðtÞ½ �TcovðetÞ�1 ZðtÞ � XðtÞ½ �
� �

(46)

where cov(et) is a covariance matrix of vector e(t). With the

assumption that each component e(t) is independently and

identically distributed over the observation times, the like-

lihood function p(Z/c) is then the product of the distributions of

ei(t), i = 1, 3 (Eq. (46)) at all observation times:

PðZ=cÞ/exp �
X3

i¼1

1

2s2
i

X
t2obsðZiÞ

ZiðtÞ � XðtÞ½ �2
8<
:

9=
; (47)

where constants s2
1, s2

2, and s2
3 are the error variances of flower-

ing date, maturity date, and yield, respectively. Then, with

Bayes’ theorem, the PPDF of parameter c is given by Eq. (43).

3.4. Sampling with the Metropolis–Hastings algorithm

The Metropolis–Hastings (M–H) algorithm is an MCMC

technique revealing high-dimensional PDFs of random vari-

ables via a sampling procedure (Metropolis et al., 1953;

Hastings, 1970; Geman and Geman, 1984; Gelfand and Smith,

1990). To generate a Markov chain in the parameter space, we

ran the M–H algorithm by repeating two steps: a proposing

step and a moving step, after Xu et al. (2006). In each proposing

step, the algorithm generates a new point cnew on the basis of

the previously accepted point c(k�1) with a proposal distribu-

tion q(cnew/c(k�1)). In each moving step, point cnew is tested

against the Metropolis criterion to examine if it should be

accepted or rejected. For simplicity of notation, we denote L(c)

as the targeted stationary distribution p(c/Z). A computer

implementation of the M–H algorithm consists the following

steps (Spall, 2003):

Step 1: Choose an arbitrary initial point c(0) in the parameter

space.

Step 2: (Proposing step). Propose a candidate point cnew

according to a proposal distribution q(cnew/c(k�1)).

Step 3: (Moving step). Calculate Pðcðk�1Þ; cnewÞ ¼minf1;
ðLðcnewÞqðcðk�1Þ=cnewÞÞ=ðLðcðk�1ÞÞqðcnew=cðk�1ÞÞÞg, and compare

the value with a random number U from the uniform

distribution U [0,1] that is defined on interval [0,1]. Set

c(k) = cnew if U � P(c(k�1), cnew); otherwise set c(k) = c(k�1). This

test criterion is also called the Metropolis criterion.

Step 4: Repeat steps 2 and 3 until enough samples are

obtained.

The proposal distribution q(cnew/c(k�1)) can strongly affect

the efficiency of the M–H algorithm. To find an effective

proposal distribution, we first made a test run of the algorithm

with 60,000 simulations, using a uniform proposal distribution

centred at the currently accepted point:

Cnew ¼ Cðk�1Þ þ b rdðLu
m � Ll

mÞ þ Ll
m c (48)
where rd is a random number uniformly distributed between 0

and 1 and Ll
m and Lu

m are the upper and lower values controlling

the proposing step size. Based on the test run, we constructed

a Gaussian distribution N(0, cov0(c)), where cov0(c) is a diagonal

matrix with its diagonal being set to the estimated variances of

the parameter c from the initial test run and zero elsewhere.

Next we adopted the following proposal distribution to for-

mally execute the consecutive MCMC simulations:

cnew ¼ ck�1 þN½0; cov0ðcÞ� (49)

In each proposing step of the M–H algorithm a new point cnew

is generated from its predecessor c(k�1) from a Gaussian dis-

tribution with mean c(k�1), constant variances estimated from

the previous run, and zero parameter covariance.

We formally made three parallel runs of the M–H algorithm

with the proposal distribution in Eq. (49). Each run simulated

60,000 times. The initial number of samples in the burn-in

period (5000 samples) was discarded after the running mean

and standard deviations were stabilized. The acceptance rates

for the newly generated samples were about 30–40% for the

three runs. For statistical analysis of the parameters, we used

the samples of the final run (55,000 samples in total) after their

burn-in period.

3.5. Parameter estimation

We estimated parameter statistics based on the 55,000

samples of the final run. Uncertainties of the parameters

were quantified with a 97.5% highest probability density

interval, the interval of the minimum width containing 97.5%

of the area of the marginal distributions. We ran the MCWLA

using all the 55,000 sets of parameters sampled by the final run

of the M–H algorithm to investigate the uncertainties of the

ensemble prediction. From the 55,000 sets of parameters, we

further selected the optimal parameter set that produces the

minimum root mean-square error (RMSE) between modelled

and observed historical crop-yield series.
4. Results

4.1. Inversion results of model parameters and the
optimal parameter set

Our inversion results of model parameters at the grid of Harbin

for spring maize in the Northeast China Plain and at the grid of

Zhengzhou for summer maize in the North China Plain are

shown in Table 1. We list the model parameters’ 97.5% high-

probability intervals, mean estimates, standard deviations,

and the optimal parameter set, based on the 55,000 sets of

parameters sampled by the final run of the M–H algorithm.

Some other parameters or constants used in the study are

listed in Table 2. These parameters are used for model

evaluation and uncertainties analysis.

4.2. Model evaluation

First, using the corresponding optimal parameter set, the

MCWLA was run at each 0.58 � 0.58 grid with maize cultivation

fraction �0.05 across the two major production provinces for



Table 2 – Values of some model parameters or constants used in the study.

Symbol Description Values used in the study References

Wsow Threshold fraction of soil water for automatic sowing 0.5 This study

LAImax Maximum leaf area index 5.8 m2 m�2 Cavero et al. (2000)

Fcr A parameter to adjust the damage extent of one

flooding event

5.0 This study

LAIdg Mean rate of LAI decrease after flowering �0.002 m2 m�2 This study

Drmax Maximum root depth 1.5 m Cavero et al. (2000)

j Priestley–Taylor coefficient 1.32 Priestley and Taylor (1972)

Ic Interception storage parameter 0.01 Kergoat (1998)

cp Specific heat of moist air 1.013 kJ kg�1 8C�1 Allen et al. (1998b)

pre Atmospheric pressure 100 kPa Sellers et al. (1996)

e Molecular weight ratio of water vapour/dry air 0.622 Allen et al. (1998b)

r Density of air 1.225 kg m�3 Sellers et al. (1996)

a Leaf respiration as a fraction of Rubisco capacity For C3 plants 0.015,

for C4 plants 0.02

Farquhar et al. (1980)

kc Michaelis constant for CO2 at 25 8C 30 Pa (Q10 = 2.1) Collatz et al. (1991)

ko Michaelis constant for O2 at 25 8C 30 kPa (Q10 = 1.2) Collatz et al. (1991)

t CO2/O2 specificity ratio at 25 8C 2600 (Q10 = 0.57) Brooks and Farquhar (1985)

mc Moisture content of grain 0.11 NRC (1982)

cc Carbon content of biomass 0.45 Schlesinger (1997)

gmin Minimum canopy conductance 0.5 mm s�1 Haxeltine and Prentice (1996b)

kb Light extinction coefficient 0.5 Woodward (1987)

u Co-limitation parameter 0.7 McMurtrie and Wang (1993)

am Empirical parameter in calculating Edemand 1.391 Monteith (1995)
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spring maize (i.e., Heilongjiang and Jilin provinces) and the

two major production provinces for summer maize (i.e.,

Henan, and Shandong provinces), respectively, resulting in a

deterministic yield prediction (YdOp) for each grid. Then the

MCWLA was run using all the 55,000 sets of parameters

sampled by the M–H algorithm, and an ensemble mean yield

prediction (YdEn) for each grid can be derived by averaging the

output from each set of parameters. We calculated the

modelled sowing-area-weighted yield for each province using
Table 3 – The r and RMSE (kg haS1) between the modelled (YdO
grids and at province scale (in italic).

Province/grid YdOp r YdEn r

Heilongjiang province 0.68** 0.67**

Harbin 0.74 0.61

Mudanjiang 0.10 0.42

Jilin 0.45 0.52*

Yanji 0.53 0.54

Changchun 0.18 0.41

Tonghua 0.67 0.64

Siping 0.40 0.88**

Henan province 0.48 0.57*

Luoyang 0.03 0.17

Pingdingshan 0.38 0.41

Luohe 0.30 0.13

Xinxiang 0.33 0.18

Shandong province 0.59* 0.82**

Jinan 0.52 0.62*

Qingdao 0.47 0.61*

Weifang 0.30 0.51

Taian 0.17 0.33

* p < 0.05.
** p < 0.01.
the modelled yields and maize growing area ratio (to province

total) at the grids (Qiu et al., 2003) across the province,

assuming the yearly growing area ratio at each grid (to

province total) did not change throughout the period. The

performance of the model was evaluated by calculating the

Pearson correlation coefficient (r) and RMSE between the

modelled (YdOp or YdEn) and the corresponding observed

yield series at both the crop model grid scale and province

scale. Correlations are considered to be significant at p < 0.05.
P and YdEn) and observed yield series at some crop model

YdOp RMSE YdEn RMSE Years

388 419 1985–2002

712 933 1997–2002

954 883 1995–2002

859 951 1985–2002

1845 1529 1992–2002

1536 1544 1995–2002

800 781 1996–2002

1146 1391 1996–2002

501 563 1987–2002

1389 1334 1987–2002

841 882 1992–2002

1322 1501 1994–2002

820 1072 1994–2002

439 309 1985–2002

684 756 1989–2002

1329 1225 1991–2002

634 648 1992–2002

1350 1283 1993–2002
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4.2.1. Model skill at the grid scale
For spring maize, the observed data at the grid of Harbin from

1985 to 1996 were used for model calibration. In contrast, the

observed data at the grid of Harbin from 1997 to 2002; the grid

of Mudanjiang from 1995 to 2002; and the grids of Yanji from

1992 to 2002, Changchun from 1995 to 2002, Tonghua from

1996 to 2002 and Siping from 1996 to 2002 were used for model

evaluation (Table 3). At the grid of Harbin, the r between the

modelled and observed yield series is 0.61 and 0.74 for YdEn

and YdOp, respectively; the RMSE is 933 and 712 kg ha�1 for

YdEn and YdOp, respectively (Fig. 2a). At the grid of

Mudanjiang, the r between the modelled and observed yield

series is 0.42 and 0.10 for YdEn and YdOp, respectively; the
Fig. 2 – Time series in the modelled and observed yield at the cro

Mudanjiang (b), Yanji (c), Changchun (d), Tonghua (e), and Sipin

yield prediction.
RMSE is 883 and 954 kg ha�1 for YdEn and YdOp, respectively

(Fig. 2b). The r and RMSE between the modelled and observed

yield series at all the selected grids including Yanji, Chang-

chun, Tonghua and Siping are listed in Table 3. Agreement

between observed and modelled yield was variable, with r

ranging from 0.41 to 0.88 (p < 0.01) for YdEn and from 0.10 to

0.74 for YdOp.

For summer maize, the observed data at the grid of

Zhengzhou from 1995 to 2002 were used for model calibration.

In contrast, the observed data at the grid of Luoyang from 1987

to 2002; at the grid of Pingdingshan from 1992 to 2002; and at

the grids of Luohe from 1994 to 2002, Xinxiang from 1994 to

2002, Jinan from 1989 to 2002, Qingdao from 1991 to 2002,
p model grid scale for spring maize at the grid of Harbin (a),

g (f). YdEn, ensemble yield prediction; YdOp, deterministic



Fig. 3 – Time series in the modelled and observed yield at the crop model grid scale for summer maize at the grid of Luoyang

(a), Pingdingshan (b), Luohe (c), Xinxiang (d), Jinan (e), Qingdao (f), Weifang (g), and Taian (h). YdEn, ensemble yield

prediction; YdOp, deterministic yield prediction.
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Fig. 4 – Time series in the modelled and observed yield at the province scale for Heilongjiang province (a), Jilin province (b),

Henan province (c), and Shandong province (d). YdEn, ensemble yield prediction; YdOp, deterministic yield prediction.
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Weifang from 1992 to 2002 and Taian from 1993 to 2002 were

used for model evaluation. At the grid of Luoyang, the r

between the modelled and observed yield series is 0.17 and

0.03 for YdEn and YdOp, respectively; the RMSE is 1334 and

1389 kg ha�1 for YdEn and YdOp, respectively (Fig. 3a). At the

grid of Pingdingshan, the r between the modelled and

observed yield series is 0.41 and 0.38 for YdEn and YdOp,

respectively; the RMSE is 882 and 841 kg ha�1 for YdEn and

YdOp, respectively (Fig. 3b). The r and RMSE between the

modelled and observed yield series at all the selected grids

including Luohe, Xinxiang, Jinan, Qingdao, Weifang and Taian

are also listed in Table 3. The r ranged from 0.13 to 0.62

(p < 0.05) for YdEn and from 0.03 to 0.52 for YdOp. The r was

significant at the 0.05 level at several grids in Shandong

province. The RMSE can be further minimized by bias

correction based on observations, although r cannot.

4.2.2. Model skill at the province scale
The performance of the model was further evaluated at the

province scale. For spring maize in Heilongjiang province from

1985 to 2002, the r between the modelled and observed yield

series is 0.67 (p < 0.01) and 0.68 (p < 0.01) for YdEn and YdOp,

respectively; the RMSE is 419 and 388 kg ha�1 for YdEn and

YdOp, respectively (Table 3) (Fig. 4a). In Jilin province from

1985 to 2002, the r between the modelled and observed yield

series is 0.52 ( p < 0.05) and 0.45 for YdEn and YdOp,

respectively; the RMSE is 951 and 859 kg ha�1 for YdEn and

YdOp, respectively (Fig. 4b).
For summermaize inHenan provincefrom 1987to2002, the r

between the modelled and observed yield series is 0.57

(p < 0.05) and 0.48 for YdEn and YdOp, respectively; the RMSE

is 563 and 501 kg ha�1 for YdEn and YdOp, respectively (Table 3)

(Fig. 4c). In Shandong province from 1985 to 2002, the r between

the modelled and observed yield series is 0.82 (p < 0.01) and 0.59

(p < 0.05) for YdEn and YdOp, respectively; the RMSE is 309 and

439 kg ha�1 for YdEn and YdOp, respectively (Fig. 4d).

The ensemble hindcasts by MCWLA captured significantly

the interannual variability of maize yield in all the four

province from 1985 to 2002 (Table 3). Among other things, the

relative performance of the MCWLA within an individual

province could be attributed to the relative crop irrigation

fraction, because the present version of the MCWLA does not

account for irrigation. For example, the maize irrigation

fraction in Henan province (
0.5) is quite higher than that

in Heilongjiang province (<0.2), which led to a relatively bad

performance of the MCWLA in Henan province (Fig. 4c).
5. Discussion

5.1. Crop response to elevated [CO2]

Extensive controlled-environment experiments have showed

that elevated [CO2] lead to a decrease in stomatal conductance

in both C3 and C4 species (Rogers et al., 1983; Morrison and

Gifford, 1984a,b; Morrison, 1987; Bunce, 1996), which reduces
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the transpiration rate per unit leaf area. Morrison and Gifford

(1984b) found that stomatal conductance was reduced over a

range of species by 36% while transpiration was reduced by 21%,

the difference being attributed to the higher leaf temperatures.

Similar average values of 34% and 23% for stomatal conduc-

tance and transpiration were found in a literature survey by

Cure and Acock (1986). Both an increase in photosynthesis and a

decrease in transpiration result in an increase in a plant’s water

use efficiency, theratio of carbon fixation to water loss. A review

of 18 crop species in controlled environments (Kimball and Idso,

1983) suggested that water use efficiency might double with the

doubling of CO2. The enhancement in CO2 effects on growth and

water use efficiency when soils dry results partly from slower

transpiration and a delay in the onset of drought (Allen et al.,

1998a). This is especially true of C4 species, many of which

exhibit little photosynthetic response to CO2 until soil begins to

dry (Gifford and Morison, 1985). Leaf area of maize did not

respond to CO2 when well-watered, but increase by up to 35% at

elevated [CO2] as soil dried (Samarakoon and Gifford, 1996).

Plant biomass responded similarly (Samarakoon and Gifford,

1996). Leakey et al. (2004) showed maize growth at elevated

[CO2] significantly increased leaf photosynthetic CO2 uptake

rate by up to 41%, and 10% on average. Kim et al. (2006, 2007) also

showed that CO2 enrichment (from 370 to 750 ppm) did not

enhance the growth (including leaf area per plant, specific leaf

area, biomass and its allocation) or canopy photosynthesis of

maize plants, however leaves grown at elevated [CO2] exhibited
Fig. 5 – MCWLA simulated daily changes in gc, TT, LAI and crop yi

[CO2] (750 ppm) at the grid of Harbin in 1997 and 2002.
over 50% reduction in stomatal conductance and transpiration,

and canopy evapotranspiration rates decreased by 22% from

emergence to silking. Water use efficiency increased by 108%.

The MCWLA captures the key responses mechanism quite

well (Figs. 5 and 6). When atmospheric [CO2] changed from 370

to 750 ppm, for spring maize at the grid of Harbin (Fig. 5), gc and

TT reduced by 26.6% (18.5%) and 44.5% (38.1%) on average,

respectively, during the growing period in 2002 with total

precipitation 476 mm (1997 with total precipitation 490 mm);

LAI and crop yield increased by 0.96% (5.56%) and 3.25% (6.15%)

on average, respectively, in 2002 (1997). For summer maize at

the grid of Zhengzhou (Fig. 6), gc and TT reduced by 31.0%

(26.6%) and 50.7% (49.4%) on average, respectively, during the

growing period in 2002 with total precipitation 701 mm ((until

flowering in 1997 with total precipitation 354 mm); LAI and

crop yield increased by 0.0% (0.33%) and 0.0% (24.25%) on

average, respectively, in 2002 (1997). The results suggest water

use efficiency increased by 86.0% (71.5%) on average at Harbin

and by 102.8% (145.6%) on average at Zhengzhou in 2002 (1997).

A delay in the onset of drought by elevated [CO2] also was

simulated at Zhengzhou in 1997 (Fig. 6).

5.2. VPD, TT, and crop yield

VPD is another important variable that affects TT and con-

sequently water use and crop yield (Challinor and Wheeler,

2008a). The MCWLA simulates the relationship between
eld of spring maize at baseline [CO2] (370 ppm) and elevated



Fig. 6 – As for Fig. 5 but summer maize at the grid of Zhengzhou.
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VPD and TT using Eqs. (34) and (35), which also includes

indirectly the effects of soil moisture through gc. Crop TT

increase with increasing VPD, however the increase has limits

and a limiting maximum TT is commonly reached at a VPD of

�2.0 kPa. (McNaughton and Jarvis, 1991; Fletcher et al., 2007).

Bunce (1981) showed decreased gc and TT in a number of

species between 1.0 and 2.5 kPa. Although these studies

showed a similar pattern, the TT response differs both among

and within species (Isoda and Wang, 2002). The MCWLA also

captures the TT response quite well under both atmospheric

[CO2] (370 and 750 ppm) (Fig. 7). At the grid of Harbin, TT

increased with VPD and reached a maximum TT at a VPD of

about 0.95 kPa in 1997 and about 0.75 kPa in 2002, then

decreased with VPD increasing (Fig. 7). At the grid of

Zhengzhou, TT increased with VPD and reached a maximum

TT at a VPD of about 0.98 kPa in 1997, and about 0.87 kPa in 2002,

then decreased with VPD increasing (Fig. 7). Soil drought could

complicate the response pattern, as in 1997 (Fig. 7a and c).

5.3. Uncertainties in model parameters and yield
prediction

Uncertainties in model parameters are presented in Table 1. As

a result, ensemble predictions (by perturbing the parameters)

produce a large yield range, for example, with standard errors

ranging from 179 to 390 kg ha�1 in Harbin and from 178

to 634 kg ha�1 in Luoyang (Fig. 2). In this study, the model
parameters were calibrated at the representative grid cells

(Harbin and Zhengzhou) for spring maize and summer maize,

and then applied in the nearby two provinces, respectively.

Ensemble predictions allow for accounting the physical and

biological uncertainty (Challinor et al., 2005a). The optimal

parameter set worked better at some grids and provinces; in

contrast, ensemble predictions work better at other grids and

provinces, suggesting the optimal parameter set was locally

specific. At province scale, ensemble hindcasts captured

significantly the yield variability in all the four investigated

provinces. Ideally the model parameters PDF and the optimal

parameter set are calibrated against the historical datasets at

the same grid or a large area before the model is used for

predictions in the target grid or a large area. In addition, there

are many other nonclimatic factors affecting the weather-yield

correlations (Challinor et al., 2005b), such as changes in the

fraction of the crop under irrigation or in cultivar-specific

properties. Although the statistical data on crop growing area

and yield are the best source for large-area studies, the accuracy

of thedata may have measurableuncertainties and may change

over time (Challinor et al., 2005b).

Because uncertainties in model parameters affect assess-

ments of the impact of climate variability, the Bayesian

probability inversion and an MCMC technique is an effective

method to analyze the uncertainties in parameter estimation

and model prediction. Along this line, we plan to further

develop a super-ensemble-based probabilistic projection to



Fig. 7 – The relationship between VPD, and TT at baseline [CO2] (370 ppm) and elevated [CO2] (750 ppm) simulated by the

MCWLA at the grid of Harbin in 1997(a) and 2002 (b), and at the grid of Zhengzhou in 1997 (c) and 2002 (d).
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account for the uncertainties not only from the climate and

emission scenarios (Tao et al., 2008b), but also from the

biophysical parameters.

5.4. Climate variability and crop production prediction
over a large area

The MCWLA was developed to examine the impacts of climate

variability on crop phenology and yield over a large area. Among

the key impact mechanisms of climate change, the MCWLA

accounts mechanically for the impacts of climate variables and

elevated [CO2] on canopy net photosynthesis, stomatal con-

ductance and TT, instead of using proportionality factors as do

many crop models (Long et al., 2006; Tubiello et al., 2007b).

The MCWLA also captures the impacts of mean tempera-

ture on crop phenology change. Although the present version

of the MCWLA does not explicitly simulate the high tempera-

ture stress on crop yield, as did Horie et al. (1995) and Challinor

et al. (2005c), it does account for the impacts of extreme

temperature stress on photosynthesis and subsequently on

stomatal conductance, transpiration, and crop yield.

Level of complexity in crop modelling is closely related to the

focus and purpose of the model. Complexity is not a

prerequisite for quantifying the impacts of elevated [CO2] and

its interaction with water stress (Tubiello and Ewert, 2002;

Challinor and Wheeler, 2008b), however the models that
include the processes and interactions that are significant

determinant of crop water use and yield could be important,

especially for future climate. The MCWLA simulates the

changes of water use efficiency with climate and [CO2]

intrinsically and consequently is internally consistent. In

contrast, GLAM (Challinor et al., 2005a; Challinor and Wheeler,

2008b) simulates the effects of climate change and elevated

[CO2] in a manner of ‘offline’ by adopting a new parameter set.

The robust, process-based representation of the coupled CO2

and H2O exchanges used in the MCWLA have been validated

over the large scale including agriculture ecosystem (Haxeltine

and Prentice, 1996a,b; Sitch et al., 2003; Bondeau et al., 2007).

Many parameters in MCWLA as listed in Table 2 can be applied

universally or with small changes. The MCWLA also simplifies

the modelling of the impacts due to factors other than weather

using a single yield-gap parameter, as in GLAM (Challinor et al.,

2004). All of these make the MCWLA suitable for examining the

impacts of climate variability on crop phenology and yield over

a large area both in present and future climate condition.
6. Conclusions

A new process-based crop model, the MCWLA, was developed

to capture crop–weather relationships over a large area.

Because the MCWLA includes robust process-based represen-
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tation of the coupled CO2 and H2O exchanges, it can capture

mechanically the impacts of VPD, soil moisture, temperature

and elevated [CO2] on canopy net photosynthesis, stomatal

conductance, and transpiration, which is crucial for the models

that account for the impacts of [CO2] and drought on water use

and crop production. Ensemble hindcasts (by perturbing

parameters) and deterministic hindcasts (using the optimal

parameters set) showed that the MCWLA could capture the

interannual variability of crop yield quite well, especially at a

large scale. Furthermore, MCWLA’s simulations on crop

response to elevated [CO2] agree well with the controlled-

environment experiments, suggesting its validity in future

climate.

MCWLA simplifies the modelling of the impacts due to

factors other than weather. Also many parameters in MCWLA

can be applied universally or with small changes. Therefore,

MCWLA can be easily extended to other crop and/or regions to

examine the impacts of climate variability on crop phenology

and yield over a large area both in present and future climate

condition.

The Bayesian probability inversion and an MCMC techni-

que were applied to the MCWLA to analyze uncertainties in

parameter estimation and model prediction and to optimize

the model. We demonstrated that the system is effective in

developing an ensemble-based probabilistic projection, an

optimal projection, and to analyze the uncertainties.
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