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SUMMARY

The prime focus of this work is the comparative investigation, theoretical and numerical, of spatiotemporal
techniques used in air pollution studies. Space-time statistics techniques are classified on the basis of a set of
criteria and the relative theoretical merits of each technique are discussed accordingly. The numerical comparison
involves the applications of two representative techniques. For this purpose, the popular spatiotemporal epistemic
knowledge synthesis and graphical user interface (SEKS-GUI) software of spatiotemporal statistics is used
together with a dataset of PM2.5 daily measurements obtained at monitoring stations geographically distributed
over the state of North Carolina, USA. The analysis offers valuable insight concerning the choice of an appropriate
spatiotemporal technique in air pollution studies. Copyright # 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Concern over ambient fine particulate matter (PM) pollution is becoming more prevalent in the modern

world due to its potentially harmful effects on the human health and the environment. PM2.5 air

pollution studies, in particular, have investigated its possible association with certain adverse health

effects (Dockery et al., 1993; Pope et al., 1995; Gauderman et al., 2000; Samet et al., 2000; Tainio

et al., 2005; Mascarenhas et al., 2008). Environmental organizations, regulatory groups, and local

governments have launched projects that monitor general PM air pollution levels, in an effort to

adequately represent their patterns across space-time under conditions of uncertainty (Christakos and

Serre, 2000a, 2000b; Christakos et al., 2001; Kibria et al., 2002; Smith et al., 2003; Serre et al., 2004;

Allshouse et al., 2006; Liao et al., 2006; Bell et al., 2007; Cocchi et al., 2007; Bogaert et al., 2009;

Yu et al., 2009). The latter task calls on the need for rigorous methods that can provide informative

space-time estimates and dynamic visualizations (maps) of PM2.5 pollution throughout a geographical

region.
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Mainstream spatial statistics and geostatistics methods have been widely used to assess

geographical dependence and generate maps of various physical attributes (Gandin, 1963; Olea,

1974, 1999; Journel and Huijbregts, 1978; Christakos, 1985; Haining, 1990; Cressie, 1991). Among the

best known spatial estimation techniques is kriging (or spatial regression) in its various forms,

including ordinary kriging, OK; simple kriging, SK; indicator kriging, InK; universal kriging, UK;

and intrinsic kriging, IK (e.g., Isaaks and Srivastava, 1989; Deutsch and Journel, 1992; Chiles and

Delfiner, 1999; Dalezios et al., 2002; Bayraktar and Turalioglu, 2005). As part of the scientific

evolution process, the earlier development of spatial statistics and geostatistics was followed by

the introduction of a theoretical framework of spatiotemporal statistics and geostatistics (Christakos,

1991a, 1991b, 1992; Bogaert, 1996). This framework extended many of the earlier techniques in a

composite space-time domain, including the introduction of space-time kriging for heterogeneous

variations, in general (non-homogeneous, non-stationary etc.) and the construction of space-time

dependence models (covariance and variograms, ordinary and generalized, separable and non-

separable). In addition, this framework introduced concepts and tools that could effectively

handle space-time problems, which previous methods were not able to study due to lack of the

adequate conceptual and technical support. With the advent of modern spatiotemporal statistics and

geostatistics, a set of new techniques of space-time modeling and estimation were proposed, including,

Bayesian maximum entropy, Bayesian data fusion, information-theoretic analysis, Radonian space

transforms, non-Bayesian stochastic logic, differential geometric, and space-time diagrammatic

techniques (Christakos, 1984, 1990, 1992; Christakos and Li, 1998; Hristopulos et al., 1999; Bogaert,

2002; Christakos et al., 2002; Kolovos et al., 2004; Douaik et al., 2005; Wibrin et al., 2006; Orton and

Lark, 2007; Fasbender et al., 2008; Lee et al., 2008).

In science-based spatiotemporal analysis, one distinguishes between two major knowledge bases

(KB), as follows:
(i) T
Copy
he core (or general) KB, denoted by G-KB, which refers to what is already known about the

situation under study. As such, the G-KB may include physical laws, primitive equations,

reasoning schemes, and theoretical models of space-time dependence.
(ii) T
he specificatory KB, S-KB, which refers to the characteristics of the specific site under

consideration. As such, the S-KB may include hard data obtained across the site (exact numerical

measurements with no uncertainty for all practical purposes), and soft information (data with fair

or considerable degrees of uncertainty).
The soft information component of the S-KB may take the form, e.g., of intervals (there is not a

unique data value available at a location but, instead, an interval of possible values), probability

functions (the datum at the specified space-time location has the form of a probability distribution), and

fuzzy data (gradual assessment of uncertain information sources). Naturally, the total KB is denoted by

K ¼ G [ S, i.e., it includes both the core and the site-specific KBs.

Modern spatiotemporal analysis can account for various kinds of KBs as described above and

provide valuable tools for ambient air pollution monitoring and mapping, especially in regions with fine

PM pollution. In this work, representative space-time data analysis techniques are used to study the

geographical distribution of PM2.5 concentrations in the state of North Carolina during the year 2000.

The relative merits of the techniques are compared on both theoretical and practical grounds, thus

offering valuable insight concerning the choice of an appropriate spatiotemporal analysis technique in

real-world studies.
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2. BACKGROUND AND STUDY AREA

PM2.5 air pollution is a class of particulate pollution that comprises particles that have effective

aerodynamic diameters of 2.5 micrometers (mm) or less, allowing them to remain suspended in the

atmosphere and thus, settle out slowly, as well as potentially penetrate deeper into human bodies

through passages such as the mouth or nose (Godish, 2004; Tainio et al., 2005). In terms of their origins,

PM2.5 air pollution can arise from natural and anthropogenic sources (Artnano et al., 2003; Zhang et al.,

2007).

Natural PM2.5 air pollution is generated based on certain unavoidable, but transient, atmospheric

conditions (Godish, 2004). Pollutant concentrations are affected by emissions, topography, and land

cover. The PM2.5 distribution tends to vary geographically and seasonally. Besides major events such as

forest fires and volcano eruptions, events producing natural PM2.5 air pollution occur from animal and

plant decomposition, pollen and spores, volatile hydrocarbon emissions from vegetation, ocean spray,

soil erosion and mineral weathering, gas-phase substance emissions from soil and water surfaces, and

ozone and nitrogen oxide emissions from electrical storms (Goldberg et al., 2000). While little can be

done to mitigate natural PM2.5 air pollution, a lot of things could be done to lower its anthropogenic

counterpart.

Anthropogenic PM2.5 air pollution is viewed as a serious environmental and public health problem

(Bernstein and Abelson, 2005; Mascarenhas et al., 2008; Yu et al., 2008). Its seriousness lies in the fact

that elevated pollutant levels are produced in environments where harm to human health and welfare is

more likely (Pope et al., 1995; Godish, 2004). Some of the most common sources of anthropogenic

PM2.5 air pollution include transportation (such as cars, trains, and airplanes), stationary fuel

combustion, industrial processes, waste disposal, and secondary chemical reactions in the atmosphere.

The potential that ambient PM2.5 air pollution has in regard to its adverse effects on both the

environment and human health is what makes it the significant concern (Zidek, 1997; Kibria et al.,

2002; Bell et al., 2007). Thus, research on this phenomenon is of high value to many academic,

industrial, and governmental sectors.

In the present work, the study area is the state of North Carolina (Eastern USA). North Carolina has a

latitudinal span from 33850’ to 36835’ N and a longitudinal span from 75828’ to 84819’ W. Its

geography consists of three main regions: the coastal plain, the Piedmont region, and the Appalachian

mountains and foothills. The coastal plain’s relative flatness makes it prime land for agriculture. The

Piedmont region is the most urbanized and densely populated region, but still has gently rolling

countryside frequently broken by hills or low mountain ranges. The Appalachian mountains and

foothills section of the state has some of the tallest peaks in the Eastern USA, making it a hub for

tourism. Thus, air pollution monitoring and control has population health and financial consequences as

well. While North Carolina is located in a warm temperate zone, its diverse regions can experience a

variety of weather conditions. Locations on the mountains may see average temperatures of 308F in

January and 658F in August, whereas certain locations in the coastal plains often experience averages in
the mid 40s in January and in the 90s8F in August.

Space-time PM2.5 hard datasets were acquired from the United States Environmental Protection

Agency’s (USEPA) Air Quality System (AQS) database. The data were compiled from 38 PM2.5

monitoring stations geographically distributed throughout the study area (Figure 1), which provide

information about the PM2.5 concentration levels (measured in mg/m3), spatial coordinates, collection

time, sampling duration, and sampling frequency. The period of temporal data collection was from

January 1 to December 31, 2000. During the preprocessing stage of the dataset, the relevant column

fields included the latitude and longitude coordinates, date, hour, and measurement value. Due to the
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Figure 1. Geographical distribution of the PM2.5 monitoring stations in the state of North Carolina; the four bigger (gray) circles

indicate the control stations
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requirements of subsequent analysis, a unique temporal coordinate column field had to be created using

the values from the date and hour column fields. Also, instead of dealing with daily average

measurements, weekly average measurements were used in order to reduce the calculation overhead

(this process involved aggregating the daily data into weekly averages).

Table 1 shows the statistics of the weekly adjusted averages obtained from the PM2.5 hard dataset

(mg/m3, wherever applicable). Ideally there should have been 1976 data (52 weekly average

measurements for each of the 38 PM2.5 monitoring stations). However, the PM2.5 dataset had missing

data (which is common in practice), but not enough to inhibit analysis or cause the results to be affected

in any significant way. It is worth noting that modern spatiotemporal analysis techniques can account

for missing data, if necessary, in a physically meaningful and mathematically rigorous manner (see the

next section).

Since the prime goal of the present study is to compare the performances of different space-time

analysis techniques, the weekly adjusted averages for the PM2.5 air pollution dataset were used as a

reference to create two additional files: (i) a hard dataset with intentionally omitted space-time data at

four PM2.5 monitoring stations (herein called ‘‘control stations,’’ CSi, i ¼ 1; . . . ; 4; stations are

numbered from left to right in Figure 1) and (ii) a soft dataset containing secondary space-time

information about the omitted data. In particular, for comparative analysis purposes the soft dataset was

generated by replacing the previously omitted hard data at the control stations with interval data, where

the upper and lower bounds at each space-time point are assumed to be varying percentages of the

original hard datum. So while the modified hard dataset had one column for the measurement value,

the soft dataset has two columns: one with a lower bound and one with an upper bound at each space-

time point.
Table 1. PM2.5 dataset statistics

Count 1776 Standard deviation 5.61
Minimum 3.70 Median 14.30
Maximum 49.35 Skewness 0.89
Mean 15.14 Kurtosis 4.74
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3. SPATIOTEMPORAL ANALYSIS

This work used the spatiotemporal OK and BME techniques to study PM2.5 patterns in the state of

North Carolina during the year 2000 using space-time information (i.e., geographically distributed,

including data from other years). Although spatial OK has been used for several decades,

spatiotemporal OK is a much more recent development. Also, spatiotemporal OK is one of the most

widely used kriging techniques in space-time analysis (Bogaert, 1996), which is why it has been used in

the present study. Both the OK and BME techniques are described in detail in the relevant geostatistics

and spatiotemporal statistics literature (see references above), so that there is no need for us here to

delve into mathematical and other technical details. Instead, we start with a brief presentation of the

theoretical differences of these two representative space-time techniques, and then proceed with their

application in the dataset of interest.

On theoretical grounds, the basic concepts and assumptions of OK (spatial or spatiotemporal) can be

compared with those of BME on the basis of the following criteria (similar theoretical comparisons are

also valid between BME and techniques other than OK, including SK, UK, InK, IK, and Kalman

filters):

Estimator form: The OK is a linear estimator (Dowd, 1992; Bogaert, 1996). BME, on the other hand,

makes no restrictive assumptions concerning the linearity of the estimator (Law et al., 2006; Lee

et al., 2008).

Shape of probability law: A basic assumption of OK is normality, i.e., the underlying random

fields are assumed to be Gaussian (Olea, 1999; Chiles and Delfiner, 1999). In the case of BME,

however, non-Gaussian laws are automatically incorporated (Hristopulos and Christakos, 2001;

Papantonopoulos and Modis, 2006; Orton and Lark, 2007).

KBs processed: In the case of OK, the associated site-specific KB basically processes hard data,

which can be limiting, especially in situations where some potentially informative data might be soft

(Haining, 1990; Gundogdu and Guney, 2007). In some special applications, kriging has relied on

arbitrary and rather ad hoc tricks to account for certain soft data forms, but these tricks often lack

mathematical rigor and scientific substance (Douaik et al., 2005; Saito et al., 2005). Also, OK

does not make use of core physical knowledge that proves to be significant in certain situations

(Kolovos et al., 2002; Bayraktar and Turalioglu, 2005). The BME, on the other hand, can integrate

various kinds of core and site-specific KBs in a general and unified manner, and it can even assimilate

uncertain yet valuable information at the estimation points themselves, when available (Serre et al.,

2004; Parkin et al., 2005; Christakos et al., 2005). This also allows BME to efficiently account for

missing data by means of the nonlinear integral formulation of the probability density function (pdf)

at each space-time point (Christakos, 2000).

Estimation characterization: The OK generates a single estimated value at each geographical grid

node and the associated statistical estimation variance (Isaaks and Srivastava, 1989; Haining, 1990).

On the other hand, BME offers a more sound characterization in terms of the complete estimation pdf

at every node. Each pdf may have a different shape (non-Gaussian, in general) at each space-time

node; and from each pdf one can chose a number of possible estimates with their associated

probabilities, accuracies, confidence intervals etc. (Serre et al., 2003; Puangthongthub et al., 2007;

Querido et al., 2007).

Generalization power: In theory, BME derives several mainstream geostatistics and space-time

statistics techniques as its special cases, a fact that amply demonstrates BME’s generalization power.

For example, it can be shown (Christakos and Hristopulos, 1998; Christakos, 2000) that under

certain limiting conditions on the KB and the space-time dependence functions considered the BME
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obtains OK, SK, and IK as its special cases. Also, BME accounts for important physical cross-

correlations in the spatiotemporal domain that are not considered by mainstream techniques

(Kolovos et al., 2002, 2004). Various extensions of BME are possible, including the generalized

BME (GBME; Yu et al., 2007a, 2008) that processes directly heterogeneous space-time variations of

any degree, vectorial BME (Choi et al., 1998) that simultaneously incorporates several space-time

attributes linked via a physical law or an empirical relationship, and functional BME (Christakos,

2000) that accounts for different space-time attribute supports.

On practical grounds, the spatiotemporal epistemic knowledge synthesis and graphical user

interface software library (SEKS-GUI; Kolovos et al., 2006) was the primary tool used in the

present spatiotemporal PM2.5 data analysis. A recent version of SEKS-GUI can be found in

http://homepage.ntu.edu.tw/�hlyu/software/SEKSGUI/SEKSHome.html. Since this kind of spatio-

temporal statistics software has been routinely used in scientific applications for about two decades, no

mathematical or technical details are presented here concerning the relevant models and methods

(BME, GBME, space-time kriging etc.). Interested readers are referred to thewebsite above, the SEKS-

GUI Users Manual (Kolovos et al., 2006), the review paper by Yu et al. (2007a), and references therein.

In SEKS-GUI, the distribution of the PM2.5 concentrations is mathematically represented as a

spatiotemporal random field Xp (S/TRF). The S/TRF domain is denoted by p ¼ ðs; tÞ, in which

s ¼ ðs1; s2Þ refers to two-dimensional spatial coordinates and t is time. For example, one may chose to

express spatial distance in kilometers (km) and time in weeks (wks). In order to generate maps of the

PM2.5 concentration distribution over the study area, an output grid containing evenly distributed nodes

p was defined. This output grid followed a simple format where each axis was determined by supplying

an upper and lower bound and a parameter that signified the number of spacing units that exist between

nodes. The dimensions of the output grid allowed for a sufficient number of concentration estimates;

the total number of nodes along the s1� s2� t-axes is (32� 90� 52)¼ 149 760 nodes.

As was mentioned before, two different spatiotemporal analyses were conducted using the SEKS-

GUI software: the OK and BME analyses of space-time statistics and modern geostatistics. For

numerical comparison purposes, it was assumed that the techniques shared in common certain stages of

data preparation. Space-time trends in the PM2.5 variation were identified and removed. Experimental

space-time covariance values were calculated and theoretical space-time models were fitted to these

experimental values. The models were selected from a list of space-time covariance models available in

SEKS-GUI so that they offered best fit to the experimental values and, at the same time, represented

adequately the composite space-time dependence (correlation) structure of the PM2.5 distribution.

‘‘Composite’’ is meant in the sense that the full spatiotemporal structure was taken into account

(including heterogeneities and cross-dependences), whereas no simplifying assumptions were made,

such as spatial independence and temporally uncorrelated PM2.5 components used in previous studies

(Daniels et al., 2001; Smith et al., 2003). Then, the two techniques generated PM2.5 estimates and error

variances (or standard deviations) at each output grid node across space-time.

The visualization of the results of the spatiotemporal analysis above (estimates across space-time,

estimation errors) in terms of informative maps involved an essential geographical element provided by

external GIS software. In particular, ESRI-ArcGIS and MapWindow’s CSV-to-Shapefile plug-in

were used to convert the output PM2.5 estimation files into shapefiles and reproduce maps that were

superimposed over a shapefile of the study area. Maps of PM2.5 estimates help visualize the

spatiotemporal distribution and identify pollution patterns during the course of the 52-week period

(1 year) for the area of interest. The corresponding PM2.5 estimation error variance maps and

resulting summary error statistics served as a measure of comparison between the performances of the
Copyright # 2009 John Wiley & Sons, Ltd. Environmetrics (2009)
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space-time estimation techniques. The error variances at the four control stations were analyzed and the

actual errors were calculated at these stations as well as the statistical estimation error variances at

every output grid node. Maps such as the above offer valuable insight concerning decision-making,

resource allocation, and emission control strategies.
4. NUMERICAL RESULTS

4.1. PM2.5 pollution analysis and mapping

By means of the SEKS-GUI software, the space-time OK analysis calculated the PM2.5 statistics,

space-time dependence functions, and PM2.5 estimates on a space-time grid; and then used these

estimates to generate a set of informative pollution maps by means of the ESRI-ArcGIS visualization

tools. In particular, following the initial data processing stage (data detrending, normalization etc.),

the space-time dependence stage was conducted next, in which OK used hard weekly data at

34 geographical locations during the year 2000. Experimental covariance values were calculated along

different directions, and the dependence structure of the PM2.5 dataset was subsequently represented in

terms of theoretical nested models. Using the interactive SEKS-GUI screens, the first component of the

nested model consisted of a space-time combination of spherical-exponential functions, whereas

the second component included a combination of spherical-Gaussian functions. The space-time

covariance can be presented as a moving three-dimensional plot (two spatial and one temporal

coordinates) or by a variety of two-dimensional plots. As was also observed in previous PM2.5 studies,

some spatial covariance plots may include a nugget effect. Certain differences were observed between

spatial covariance plots considered at different time lags (corresponding to different seasons) and

between temporal covariance plots considered at different spatial lags, whereas the overall covariance

shape reflects the different scales of the physical processes underlying the PM2.5 distribution across

space and time (Yu et al., 2009).

At the space-time OK estimation stage, the data included the weekly adjusted PM2.5 hard

measurements at the 34 monitoring stations together with the means of the interval (soft) data at the

four control stations (which is a usual kriging practice known as soft data ‘‘hardening’’), see also

Section 2. Detailed PM2.5 maps were generated for every week of the year 2000. In Figure 2, we show a

subset of these OK maps of PM2.5 estimates for the wks 0, 13, 38, and 51. The black dots in each map

represent the locations of the monitoring stations, with the larger white dots designated as the four

PM2.5 control stations (also shown in Figure 1). A considerable PM2.5 variation is observed across

space and time, which may be due to a number of factors discussed in the relevant literature (e.g.,

Holland et al., 2000; Artnano et al., 2003; Godish, 2004).

Next the air pollution study focused on space-time BME analysis. By means of SEKS-GUI,

concentration estimates and maps were generated using the PM2.5 dataset available. In the case of

missing data at critical locations, BME can handle the problem by generating soft data (e.g., in the form

of probability distributions or fuzzy sets) on the basis of secondary information (qualitative assessment,

expert opinions, empirical relationships, fuzzy logic etc.; Bogaert, 2002; Kovitz and Christakos, 2004;

Parkin et al., 2005; Law et al., 2006). Also, it is worth noting that if the space-time GBME technique is

selected, certain activities of the OK preprocessing stage (data detrending, normalization) are not

needed, which could reduce possible preprocessing errors (Yu et al., 2007a, 2008). At the space-time

dependence stage of BME, a technique proposed in Christakos et al. (2002) was used to include some

soft data into covariance calculations. Note that there is a variety of space-time dependence functions
Copyright # 2009 John Wiley & Sons, Ltd. Environmetrics (2009)

DOI: 10.1002/env



Figure 2. A subset of OK-based PM2.5 maps (weeks 0, 13, 38, and 51)
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(covariance and variograms; separable and non-separable; ordinary and generalized) that can be used in

this stage (e.g., Kolovos et al., 2004; Mateu et al., 2007; Porcu et al., 2008). Nevertheless, for

comparison purposes the space-time dependence PM2.5 structure was represented using the theoretical

nested models as in the case of space-time OK above, although different model parameters were

calculated when the models were fitted to the experimental values (primarily due to the fact that in the

BME case some soft data were also included in the calculation of the experimental covariances).

As with space-time OK analysis, at the space-time BME estimation stage the data available were the

PM2.5 hard dataset and the soft dataset that contained interval data at the control stations. However,

unlike space-time OK (which used the so-called ‘‘hardening’’ scheme based on middle soft values at

these points), the space-time BME formulation processed directly the actual functional form of the soft

data at the same points (thus accounting for all possible values of each interval). Note that the shape of

the soft data affects the nonlinearity of the space-time BME estimator; e.g., if the soft datum has an

interval or probabilistic shape, the corresponding expression for the integrated pdf at each space-time

grid node has a nonlinear integral expression, in general. As before, detailed maps of the space-time

PM2.5 distribution were generated for every week of the year 2000. A subset of these PM2.5 maps is

shown in Figure 3. The maps provide valuable space-time visualizations of the considerable

geographical variation and seasonality of the PM2.5 distribution in the state of North Carolina. These

PM2.5 maps, just like those of Figure 2, can offer valuable insight concerning decision-making,

resource allocation and emission control strategies. The theoretical differences of the two space-time

analysis techniques (estimator form, underlying pdf, internal processing of KBs etc.) have led to some

quantitative differences between the space-time OK and BME maps of PM2.5 distribution, which will

be assessed numerically in the following section.
4.2. Numerical comparison of space-time PM2.5 analyses

The PM2.5 concentration values Xp are known at the control stations CSiði ¼ 1; . . . ; 4; p denotes the

space-time coordinates of each station (Figure 1). Given the Xp at CSiði ¼ 1; . . . ; 4Þ, the actual errors
Copyright # 2009 John Wiley & Sons, Ltd. Environmetrics (2009)
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Figure 3. A subset of BME-based PM2.5 maps (weeks 0, 13, 38, and 51)
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at the control stations can be calculated in terms of the absolute differences, eOK ¼ jXp � X̂OK
p j and

eBME ¼ jXp � X̂BME
p j, where X̂OK

p and X̂BME
p are the corresponding OK and BME estimates at p,

respectively. The average eOK and eBME values during the entire year 2000 are tabulated in Table 2.

Clearly, at all control stations considered, the space-time BME estimates were superior to the space-

time OK estimates.

Furhermore, the PM2.5 estimation error statistics at the control stations CSiði ¼ 1; . . . ; 4Þ
are shown in Table 3. The mean, maximum, and minimum error variances (mg/m3)2 over all 52 wks of
Table 2. Actual space-time OK and BME estimation errors (mg/m3) at control stations CSiði ¼ 1; . . . ; 4Þ
averaged over the year 2000

Control station OK BME

CS1 2.02 0.42
CS2 2.10 1.03
CS3 1.21 0.50
CS4 2.30 0.59

Table 3. Error variances (mg/m3)2 at control stations CSiði ¼ 1; . . . ; 4Þ and the corresponding ratios between
the two space-time estimation techniques

CS1 CS2 CS3 CS4

OK BME OK
BME

OK BME OK
BME

OK BME OK
BME

OK BME OK
BME

Mean 6.07 1.82 3.34 1.36 0.83 1.64 2.34 1.22 1.91 1.92 0.90 2.14
Maximum 6.72 1.96 3.42 1.45 0.95 1.52 2.43 1.38 1.76 2.81 1.09 2.57
Minimum 6.05 1.73 3.50 1.16 0.74 1.57 2.33 1.15 2.03 1.89 0.83 2.28
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2000 were calculated at each control station for space-time OK and BME, and were subsequently

compared via the ratios between them. Once again, the space-time BME analysis produced PM2.5

estimation statistics that were better than those produced by the space-time OK analysis.
5. DISCUSSION AND CONCLUSIONS

As was mentioned in the introduction, the principal focus of this work was the comparative analysis of

different spatiotemporal techniques on theoretical and numerical grounds. Therefore, the paper did not

deal with otherwise important issues, such as the effect on space-time air pollution distributions of

weather conditions, residential features, scales, topography, and land use.

A brief yet critical review of the literature outlined the main methodological differences between

certain techniques of spatiotemporal statistics and geostatistics. It was shown that space-time BME has

a number of theoretical advantages over space-time OK and other techniques. The numerical

comparison between space-time OK and BMEwas made using the SEKS-GUI spatiotemporal analysis

software, which also demonstrated certain important practical differences when the two space-time

techniques are applied in practice. For example, they handle soft information in a different manner:

space-time OK used an ad hoc criterion of considering the middle value of the soft datum at each space-

time point, whereas BME accounted for all possible values of the soft datum (BME can also account for

useful soft information at the estimation points themselves). As a matter of fact, many techniques

routinely assume the mean value of the interval or probability distribution at each (soft data) point as

the ‘‘hardened’’ value to be used in space-time estimation. However, there may be sound reasons to

select different soft data values at certain points (say, the mean, highest, lowest, most probable, or most

improbable values) rather than insisting on the mean value at all points. These reasons include the fact

that the former provides sufficient flexibility and it often is a more realistic approach than the latter (Yu

et al., 2008). For example, a spatiotemporal analysis that, on occasion, accounts for low-probability

values, may turn out to be very informative: when these values occur, they can be highly consequential

(as the financial markets know, it does not matter how rare an event is if its occurrence is too costly to

bear).

The space-time PM2.5 maps generally provide interesting information about the composite space-

time features of pollutant distribution, including spatial variation and seasonal variations. At a fine

scale, the PM2.5 estimates for the space-time OK and BME techniques are significantly different from

each other, with the estimates produced by the space-time BME analysis being more accurate than the

space-time OK analysis. This observation is further emphasized through the comparison of the PM2.5

estimation errors and error variances obtained by these two techniques. Comparative analysis

quantitatively and visually demonstrated that for each of the four control stations the BME technique

yielded lower PM2.5 estimation errors and error variances than OK. Also, at the control stations,

the values of the OK/BME estimation error ratios favored space-time BME over OK by a factor of

up to 3.5.

Summarizing, the comparative analysis of the two techniques has demonstrated that space-time

BME is superior to space-time OK (and this is true for other forms of kriging and mainstream statistical

regression, for the theoretical reasons discussed above). Furthermore, the analysis showed that

accounting for useful information at certain space-time points, even if the information is soft and

uncertain, it is often better than ignoring it. Several useful extensions of the present air pollution

analysis are possible. For example, given the space-time heterogeneous variations of certain pollutants,

the implementation of generalized spatiotemporal analysis may be a more adequate approach in such
Copyright # 2009 John Wiley & Sons, Ltd. Environmetrics (2009)
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cases. This approach, which combines heterogeneity characterization in terms of generalized space-

time dependence models (covariances, variograms, and structure functions) and air pollution mapping

in terms of the generalized space-time kriging system, has already been used with considerable success

in previous studies (Vyas and Christakos, 1997; Christakos and Vyas, 1998). In recent years,

generalized spatiotemporal analysis has been rediscovered and proposed as a potentially useful method

in the study of space-time heterogeneous air pollution variations, including PM datasets (e.g., Smith

et al., 2003). Another useful extension is a combination of generalized spatiotemporal analysis with

BMEmodeling that leads to various forms of GBME analysis with interesting air pollution applications

(Christakos and Hristopulos, 1998; Christakos and Kolovos, 1999; Yu et al., 2007a, 2007b, 2008).

Finally, incorporating multiple-point spatiotemporal statistics and accounting for space-time support

and scale effects may further improve the air pollution analysis.
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