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Mapping population distribution is an important field of geographical and

related research because of the frequent need to combine spatial data

representing socio-demographic information across various incompatible spatial

units. However, the research may become very complex and difficult when a

population in multiple places is estimated by various factors. Previous efforts in

the field have contributed to the selection of appropriate independent variables

and the creation of different population models. However, the level of accuracy

obtainable with these studies is limited by the spatial heterogeneity of population

distribution within the individual census districts, particularly in large rural

areas. A high-accuracy modelling method for population estimation based on

integration of Genetic Programming (GP) and Genetic Algorithms (GA) with

Geographic Information Systems (GIS) is presented in this paper. GIS was

applied to identify and quantify a set of natural and socioeconomic factors which

contributed to population distribution, and then GP and GA were used to build

and optimise the population model to automatically transform census population

data to regular grids. The study indicated that the proposed method performed

much better than the stepwise regression analysis and adapted gravity model

methods in estimating the population of both urban and rural areas. More

importantly, this proposed method could provide a single, unified approach to

mapping population distribution in various areas because the paradigms of these

algorithms are general.
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1. Introduction

The word’s growing population presents humanity with increasingly difficult

challenges with respect to global resources, the environment and sustainable

development. Timely and accurate population estimation, its spatial distribution

and its dynamics are important for understanding the effects of population increase

on these social, economic and environmental problems. Moreover, population

information at different levels, such as national, regional and local, is very

significant for many purposes such as resource allocation, disaster relief and
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infection control, etc. In general, population data are routinely collected by censuses

and surveys and compiled according to political or administrative units. This form

of census data, while essential for certain types of analyses, limits cross-disciplinary

study. It is also difficult to maintain the data quality at current levels in view of the

growth and migration of human populations. There is therefore a need to develop

suitable techniques for estimating population in a manner in different spatial scales.

A number of methods have been proposed to map population distribution (Lo

2001; Nelson and Deichmann 2004). However, most of these only focus on the

selection and quantification of independent variables and rarely take into account

the correlation between selected variables. Much expertise is needed in modelling

processes to formulate the relationships between independent variables and

population data successfully. It usually not only produces information redundancy

but also increases the complexity of the problem. In addition, it is very difficult for

these methods to use a uniform model structure to estimate population in different

grid cells because the form of interaction between independent variables and

population distribution often varies from area to area.

Genetic Programming (GP) is an evolutionary technique and is gaining attention

for its ability to determine the underlying data relationships and express them in a

mathematical manner (Kishore et al. 2001). In GP, finding the functional form of

the model can be viewed as being equivalent to searching the space of possible

computer programs for the particular individual computer program which produces

the desired output for given inputs (Koza 1990b). Genetic Algorithms (GA) is a

derivative-free stochastic optimisation method based loosely on the concepts of

natural selection, which was formally introduced in the 1970s by Holland (1975).

Differing from conventional optimisation methods and search procedures, GA

works by coding of the solution set and searching from a population of solutions

based on probabilistic transition rules.

This paper proposes an approach for estimating population based on integration

of GP and GA techniques with GIS. The ultimate purpose was to create a general

and automatic modelling mechanism for mapping population distribution in

different places. We first assumed that a set of factors (slope, land-cover type at grid,

spatial distribution of rivers and transport infrastructure, population values of

neighbouring villages and their spatial distribution) were likely to influence

population distribution. After GP was applied to eliminate non-functional factors

and create a model structure closest to the truth, GA was used to optimise

parameters in the GP model. According to the GP&GA model, a gridded

population map of the study area was finally generated. The result demonstrated

that the GP&GA-based method did not require any a priori knowledge about how

the factors influenced the population distribution and had much better performance

than stepwise regression analysis and adapted gravity model approaches.

2. Interpolation of population data

Practically, mapping population distribution is a spatial interpolation problem that

can be stated as follows: given a set of population data either in the form of discrete

points or for subareas, how can one find the function that will best represent the

whole surface and predict values at other points (Lam 1983). Since the publication

of the first population density isopleths map in 1857 (Robinson and Sale 1971),

interpolation methods of population data have developed quickly (Tobler 1979;

Goodchild and Lam 1980; Flowerdew and Green 1989; Dodson et al. 2000). These
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methods usually combine regular population censuses with vital registration data to

simulate population distribution and manipulate the whole process within a

framework of administrative units. In giving a systematic review of the approaches

for estimating population distribution within administrative units, Deichmann

(1996) classified them into areal interpolation and surface modelling.

However, a significant problem in these methods is how to represent ‘real world’

population distribution as accurately as possible. Areal interpolation is the process

of transforming population data between various areal units (Goodchild and Lam

1980). This zone-based method is convenient to apply, but it implies that the

phenomenon under consideration is equally distributed over the zone, which tends

to obscure local specificity, diversity and intra-unit variation. In contrast to viewing

data as discrete zones or bounded units, surface modelling of population

distribution is aimed at formulating the population in a regular grid system, in

which each grid cell contains an estimate of total population that is representative

for that particular location (Yue et al. 2005). This method allows for greater spatial

detail than is available from the zonal data alone (Bracken and Martin 1995). It also

takes account of selection of a unit of analysis based on theoretical considerations

without the limitation of the census geographical hierarchy (the researcher could

draw boundaries anywhere). Furthermore, the development of novel types of

analysis not available with the zone-based data becomes possible (measures of

distance, spatial differentiation) (Zola and Frank 2001).

The key to build population surface models is how to disaggregate population

data into grid cells. Bracken and Martin (1989) used the inverse distance weighted

(IDW) method to develop population surfaces for census enumeration districts in

the UK. They first assigned population counts to district centroids and then

interpolated empty cells by moving windows in which the population of an empty

cell was the weighted sum of all the centroids included in the window with closer

centroids having greater ‘weight’ value and vice versa. This approach, however, is

over-simplified, and its accuracy needs to be improved.

Meanwhile, use of satellite imagery as additional geographical information

provides a different approach. In this approach, linear analysis is usually applied to

develop models for estimating population quantities. For instance, Lo (1995)

developed four linear regression models based on multispectral SPOT imagery to

estimate the population and dwelling unit numbers in 44 tertiary planning units

(TPUs) in Kowloon, Hong Kong. Harvey (2002) introduced a variety of standard

spectral transformations of Landsat TM Imagery into regression models for

population estimation in Ballarat, Sydney, Australia.

Stepwise regression is a common algorithm of linear analysis. Li and Weng (2005)

used stepwise regression analysis to develop models for estimating population

quantities in Indianapolis, IN, USA. In the process of modelling, remote sensing

variables were sequentially added to and removed from the model using the list of

candidate variables (original ETM + bands, principal components, vegetation

indices, fraction images, temperature and textures) until the model could not predict

the population data any more either by adding or by removing a single variable. The

number of exponents then became much greater than that using other possible

means. The study demonstrated that this algorithm was good for identifying suitable

variables for developing a population estimation model. However, it required the

model structure to be specified and model coefficients to be determined in advance,

which was commonly difficult to do, especially for low and high density regions.

A technology for mapping population distribution 49

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
s
t
 
o
f
 
G
e
o
g
r
a
p
h
i
c
a
l
 
S
c
i
e
n
c
e
s
 
&
 
N
a
t
u
r
a
l
 
R
e
s
o
u
r
c
e
s
 
R
e
s
e
a
r
c
h
]
 
A
t
:
 
0
0
:
2
5
 
1
3
 
F
e
b
r
u
a
r
y
 
2
0
1
0



In addition to extracting ancillary information or pixel characters from satellite

imagery, researchers apply plenty of natural and socioeconomic data to mapping

population distribution. The global demography project of National Centre for

Geographic Information and Analysis (NCGIA) is a typical application of these

approaches. The gravity model has been used by the project to create continental-

scale population databases for Africa, Asia and Latin America, with support from

the United Nations Environment Program, the International Center for Tropical

Agriculture (CIAT) and others. The implementation of the gravity model is
commonly based on the assumption that people tend to live in or close to cities and

tend to move toward areas that are well connected with urban centres. Even in rural

areas, it is expected that densely populated areas are closer to transport

infrastructures than more isolated areas, and higher densities are nearer cities than

the hinterland. The stylised facts concerning the distribution of people across space

were implemented using the concept of accessibility, a measure of the ease by which

destinations such as markets or service centres could be reached from a given

location. The applications represented the sum of indicators of size or mass at the
destinations (such as population of surrounding cities) inversely weighted for some

function of distance (Balk et al. 2006). In this measure, deciding what to select into

the models was also a difficulty. Bias was easily introduced if the focus of the

analysis was on one of the factors used in the model.

Although previous research has indicated that populations with high density were

often underestimated and those with low density were often overestimated (Harvey,

2000), no suitable solution has been proposed to correct these errors. There is still a

need to invent computer-based tools which can automatically derive population
models which are closest to the real population distribution in various places.

3. Methodology

As is well known, generating a gridded population map often consists of three basic

steps: (1) creating a surface of weighting factors in a regular grid system for the

study areas; (2) adjusting the basic weights derived in the first step using auxiliary

data sources; (3) distributing the total population in the study areas to the

corresponding grids in proportion to the weights constructed in the previous steps

(Yue et al. 2003). In these steps, the most important issue is the size and shape of the

model of population distribution. That is, one should first find the functional form
of the model that best fits the observed empirical data, and only then go on to find

any constants and coefficients that happen to be needed. A general framework for

this study was designed as shown in Figure 1. The system comprised three parts,

namely, data input, model structure selection and model parameter optimisation

from left to right.

In the beginning, a number of natural and socioeconomic factors modified from

those recommended by Dobson et al. (2000), Yue et al. (2003) and Nelson and
Deichmann (2004) were selected and assumed to have some relation with the

population distribution. Corresponding data layers were gathered and input into the

GIS database. GIS software was used to calculate original values of these factors.

Then, the relationship between population distribution and the input variables was

formulated by GP. Mathematically, the relationship can be expressed as

popu xð Þ? x1, x2, . . . , xnð Þ ð1Þ

where popu(x) was the estimated population value in a grid and x1, x2,…, xn were the

50 Y. L. Liao et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
s
t
 
o
f
 
G
e
o
g
r
a
p
h
i
c
a
l
 
S
c
i
e
n
c
e
s
 
&
 
N
a
t
u
r
a
l
 
R
e
s
o
u
r
c
e
s
 
R
e
s
e
a
r
c
h
]
 
A
t
:
 
0
0
:
2
5
 
1
3
 
F
e
b
r
u
a
r
y
 
2
0
1
0



normalised values of various factors in the grid. During the process of modelling,

GP produced a computer program which took the factor variables as input and

created the structure for the model of population distribution as output. The

resulting model structure (computer program) evolved by GP was the one that best

fitted the observed empirical data. Because the search space of GP is too large to

optimise a specified node of computer programs, it is often difficult to evolve

appropriate constants as part of the solution. So a number of techniques to

supplement the tuning of constants in an evolved equation have been used to

augment the evolutionary process (Whigham and Keukelaar, 2001). In the system,

GA was applied to find the values of certain coefficients and constants required by

the GP model so as to achieve the best fit between the observed data and the model.

Individuals in GA were directly composed of original variables of the GP model and

their evaluation criterion was how close the estimated results were to the actual. In

the end, populations in census districts were allotted to grids in the GP&GA-based

model.

3.1 Preparing spatial data under GIS environment

GIS plays a significant role in data processing and has insuperable advantages over

traditional methods (Huang et al. 2004). It allows the addition of relevant layers

which can be used for analysing the spatial relationships among selected factors.

Also, it offers database capabilities that can handle attributes data effectively.

Attribute calculations are simple and relatively accurate. We used ARCGIS 9.0i and

Geoda 095i as the GIS platform to quantify the selected factors.

3.2 Creating the population model using GP

The key step in building population models is to create a model structure. A rapidly

developing method for solving modelling problems is based on Evolutionary

Algorithms (EA). GP which is a member of the EA family can produce the

inherently hierarchical results to solve the problem in a relatively economical way.

One important feature of GP is the absence of preprocessing of inputs and the fact

that the solution is expressed directly in terms of the functions and arguments from

Figure 1. Integration of GP, GA and GIS for mapping population distribution.
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the problem domain. This makes the results immediately comprehensible and

intelligible in terms of the problem domain (Koza 1990a). Specifically, GP has been

successfully applied in geographical and relative studies, such as predicting the

density of an Australian marsupial (Whigham 2000), modelling land change

(Manson 2005), downscaling daily extreme temperatures (Coulibaly 2004) and

mapping landslide-hazard zones (Listchert 2004).

3.2.1 Initial group. A key step of GP is to create an initial group, which consists of

a number of potential solutions (computer programs). In this study, every computer

program had a tree-based structure and each internal node of this tree was a

function node taking one of the values from the set { + , 2, 6, /, exp, ln}. Moreover,
the leaves below these nodes were placed within the terminal set which includes

influencing factor variables and random constants. An example of such a parse tree

with the expression that it represents is given in Figure 2. The function set nodes are

represented by circles and the terminal set nodes by rectangles. This expression was

evolved for a population in grids, i.e. for estimating popu(x), SP, RD and RV

representing slope, distance to transport infrastructure and rivers, respectively. The

‘tree depth’ of this expression was 4, where ‘tree depth’ was the length of the longest

path from the ‘root node’ of the tree (Figure 2) to the selected node.

The closure property was maintained by ensuring that all possible arrangements

of the expressions would lead to a computer program which could be evaluated

without error. The method of creating the initial group was ramped half and half,

which permitted half the group to be created with a ramped variable (where the

computer program could be of a size or structure up to the maximum depth

specified for its creation) and the other half to use ramped grow (where only the

creation mechanism could choose functions until the maximum depth was reached
when a terminal had to be chosen). After the initial group has been created, GP goes

into a loop of evaluation, selection and modification (Zhang et al. 2005).

3.2.2 Fitness evaluation. The simulation of natural selection in GP depends on the
fitness function, which decides various evolutionary operations by calculating the

fitness value of each computer program. Therefore, the fitness function is closely

related to the convergence speed and accuracy of GP.

For the problem in this paper, the coefficient of determination (R2) of the actual

population data and population estimates from each computer program was

introduced to evaluate the effectiveness of potential solutions. Because the actual

population data of each grid was unavailable in the study, we had to specify the
population data of each village for the fitness calculation. Suppose that the study

area was composed of K villages and also could be divided into N grids. Let Size_GP

Figure 2. An example of GP parse tree representation.
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be the group size of GP and Gen_GP be the genetic generations. The fitness value

BsJi(i, t)_GP of the computer program Kpid(i)_GP (1(i(Size_GP) in the tth

(1(t(Gen_GP) generation could be defined as

BsJi i, tð Þ GP~

PK

j~1

P jð Þ{P
� �

P0 jð Þ{P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PK

j~1

P jð Þ{P
� �2PK

j~1

P0 jð Þ{P0
� �2

s ð2Þ

where P̄ and P0 indicated average values of the actual and simulated population in

all villages respectively, P(j) was the actual population value of village j(1(j(K),

and P9(j) was the simulated population value of village j with computer program

Kpid(i)_GP, which was calculated by the equation

P0 jð Þ~
XGN

g~1

popu g, jð Þ ð3Þ

where GN was the number of grids in village j, popu(i, j) was the simulated

population value of grid g(1(g(n) in village j which was determined by the

computer program Kpid(i)_GP. From the fitness equation, we could find that a

higher fitness value means a better solution.

3.2.3 Selection and reproduction. Based on the fitness value, a computer program

from the group was selected for further modification. A number of computer

programs from the group were randomly selected, and then the fitness of members

of this group are compared with each other. Finally, the actual best replaced the

worst. Note that all the selected computer programs returned to the current

generation after every selection. Therefore, some high-fit computer programs

could be selected or copied many times. In this way, the computer program with

the best fitness would, on average, be reproduced more often than the lower

fitness computer program. This adheres to the Darwinian principle of ‘survival of

the fittest’.

3.2.4 Evolutionary operators. The selected program was then modified by

evolutionary operators and encapsulated into the next generation. Crossover and

mutation are the simplest, yet the most useful evolutionary operators (Zhang et al.

2005).

In crossover, two computer programs (the highlighted subtrees in Figure 3(a))

were selected and one point on each was taken as a swapping point. Each subtree

from this point was exchanged with the other to create the offspring (bottom trees

in Figure 3(a)). The assumption was that high-fit computer programs were

composed of ‘building blocks’ which could be reshuffled with positive effect. The

mutation operator was implemented in a ‘shrink’ way. Shrink mutation only

referred to the subtree below the selected node of a computer program. Once a

node of one computer program (the highlighted subtrees in Figure 3(b)) was

chosen randomly, the offspring of its subtree was moved into the position of the

parent. Although it may reduce the diversity, shrink mutation was avoided to

make the computer program grow from generation to generation. It was

particularly useful to consider that how long some computer programs got as

the evolutionary process continued.
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3.3 Parameters optimisation using real-valued GA

To improve GP model performance, optimisation of the model parameters was

necessary. GA is a robust, domain-independent mechanism for optimisation and has

a high probability of searching for optimal solutions in large and complex non-

linear spaces. Although GP and GA use the same principles, representation is the

biggest difference between these two algorithms. GA directly manipulates the coded

representation of the problem, because the representation scheme can severely limit

the window by which the system observes its word. However, a string-based

representation scheme does not provide the hierarchical structure central to the

organisation of computer programs (into programs and subroutines) and the

organisation of behaviour (into task and subtasks). Moreover, the representation

scheme does not provide any convenient way of representing arbitrary computa-

tional procedures or of incorporating iteration or recursion when these capabilities

are inherently necessary to solve the problem (Koza 1990a). GP is a symbolic

approach to program induction that overcomes the fixed-length limitations of

standard GA approach.

In particular, GA is a mathematically near optimal approach to adaptation in the

sense that it maximizes overall expected payoff when the adaptive process is viewed

as a set of multi-armed slot machine problems for allocating future trials in the

search space given currently available information (Koza 1990a). It has been used to

solve optimisation problems in many geographic studies, such as path configura-

tions design (Brookes 2001), the HAZMAT route plan (Huang et al. 2004) and

optimal location search (Li and Yeh 2005).

3.3.1 Real-valued coding. Conventional GA generally represents trial solutions in

the form of a discrete or binary string called a chromosome. For large problems,

binary encoding results in very large strings which can slow down the evolution

process. Moreover, if the length of the string is not long enough, it is only possible

Figure 3. Examples of GP crossover (a) and mutation (b).
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for GA to get near the region of the global optimum rather than arrive at it.

Therefore, conventional GA seems to have difficulties in fine tuning the parameters

(Su and Chang 2000). In most physical areas, because the parameters involved in the

optimisation problem are all real-valued, it is better to operate them directly in the

original real-valued space instead of the discrete space. Thus, in our real-valued GA,

each individual represented an n-dimensional vector which consisted of the

parameters of the optimisation problem to be solved and the evolutionary operators

merely acted on genes of individuals. This coding method was quite convenient for

implementing the operators.

3.3.2 Fitness evaluation. The fitness function of GA was a little more complex.

Similarly, let N be the total number of grids under study, K be village numbers,

Size_GA be group size of GA, and Gen_GA be genetic generations. The raw fitness

function of the individual Kpid(i)_GA in the tth (1(t(Gen_GA) generation was

expressed as

BsJi i, tð Þ GA~
1

SERR i, tð Þz$
ð4Þ

where SERR(i, t) was the sum of square error of population estimation of all villages

with individual Kpid(i)_GA and was taken as the performance index of the

individual; while ? was a constant, which was assigned 10210 for the study in this

paper. The simulated population in each village was likewise calculated according to

equation (3).

To avoid the premature convergence problem in calculating fitness, we calculated

the performance index sum of all individuals in the current generation Total_BsJ(t)

by using the equation Total BsJ tð Þ~
PSize GA

i~1

SERR i, tð Þ. Then with group size

Size_GA, GA diverged from and converged with the performance index of each

individual in accordance with

SERR0 i, tð Þ~ Size GA|SERR i, tð Þð Þ
Total BsJ tð Þ ð5Þ

Finally, the algorithm gave the eventual fitness function

BsJi i, tð Þ GA~
1

SERR0 i, tð Þz$
ð6Þ

3.3.3 Selection and reproduction. Reproduction is usually the first operator applied

to a group. It selects good individuals in a group and forms a mating pool so as to

improve the chances of converging towards an optimal region. Because multiple

copies of the good individuals are carried out, bad individuals are eliminated from

the group for further consideration. Thus the reproduction operator is an

exploitative operation for the good individual in the group. In our real-valued

GA, we took the commonly-used reproduction operator, the proportional selection

operator, where an individual in the current group was selected with a probability

proportional to the individual’s fitness.

3.3.4 Evolutionary operators. To exploit the potential of the current gene pool, we

used crossover operators to generate new individuals in the hope of retaining
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positive features from the previous generation. There are two types of crossover

operators: (1) one-point crossover where a crossover point on the gene code is

selected at random and two parent individuals are interchanged at this point; (2)

two-point crossover where two crossover points are selected and the part of the

individual between these two points is then swapped to generate two offspring (Su

and Chang 2000). Figure 4 shows the conventional two-point crossover mechanism

undergoing crossing over. As can be seen, the crossover operator may bring two new

individuals more close to each other. Thus, the crossover mechanism used in the

study could be defined as follows

TempC ið Þ GA~a|Kpid iz1ð Þ GAz 1{að Þ|Kpid ið Þ GA ð7Þ

TempC iz1ð Þ GA~a|Kpid ið Þ GAz 1{að Þ|Kpid iz1ð Þ GA ð8Þ

where Kpid(i)_GA and Kpid(i + 1)_GA (1(i(Size_GA21) were selected indivi-

duals at the tth generation which were going to proceed to crossover. The two

vectors TempC(i)_GA and TempC(i + 1)_GA were the two offspring produced after

crossing over Kpid(i)_GA and Kpid(i + 1)_GA. The parameter a was a random

value in [0, 1].

By spontaneously generating new individuals, mutation then provided a

mechanism for maintaining the group diversity. The conventional way of

implementing mutation is to flip a bit with a probability equal to a very low given

mutation rate. In our GA, since the individuals were represented as n-dimensional

vectors, the mutation mechanism proceeded by adding a small or large amount of

noise to the selected individual. It should be emphasized that the mutated individual

would still lie in its domain space.

Figure 4. An example of a conventional two-point crossover mechanism.

56 Y. L. Liao et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
s
t
 
o
f
 
G
e
o
g
r
a
p
h
i
c
a
l
 
S
c
i
e
n
c
e
s
 
&
 
N
a
t
u
r
a
l
 
R
e
s
o
u
r
c
e
s
 
R
e
s
e
a
r
c
h
]
 
A
t
:
 
0
0
:
2
5
 
1
3
 
F
e
b
r
u
a
r
y
 
2
0
1
0



4. Implementation and analysis results

4.1 Study area and input variables

The study area is located at Heshun, a county in Shanxi Province, China. The

proposed method was tested by mapping the population distribution in Heshun

County in 2001 based on some natural and socioeconomic factors. This study

compared the effectiveness of applying the proposed GP&GA-based method,

stepwise regression analysis, and adapted gravity model for mapping population

distribution.

Heshun lies in the east of Shanxi, at 37u039 E and 113u059 N (Figure 5). It is

composed of 326 administrative villages and the area of the region is 2250 km2. In

2001, the total population was 134,766 and the average population density was

59.896 persons/km2. The region is sparsely populated, which is similar to most

counties in the north of China. This work may be of great benefit to further research

in mapping population in rural areas of China, and even the world.

The village census data (from the Heshun Statistics Department) was allocated to

grids through a ‘smart’ interpolation based on the relative likelihood of population

occurrence in the grids. Because Heshun is a sparsely populated area, the grid layer

used in the mapping process had a cell size of 1 km2 and a dimension of 75630 cells

(2250 data points). In our study, the probability coefficients of the grids related to

the following factors (Figure 6):

N slope, weighted by favourability of slope categories;

N rivers, weighted by distance from grids to the nearest river;

N transport infrastructure, weighted by distances from grids to the nearest road

and railway;

N land-cover, weighted by the population density in certain types;

N neighbouring villages, weighted by the distances from grids to neighbouring

villages and the population of these neighbours, also including distances to the

county seat and its population data.

Figure 5. Location of Heshun.

A technology for mapping population distribution 57

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
s
t
 
o
f
 
G
e
o
g
r
a
p
h
i
c
a
l
 
S
c
i
e
n
c
e
s
 
&
 
N
a
t
u
r
a
l
 
R
e
s
o
u
r
c
e
s
 
R
e
s
e
a
r
c
h
]
 
A
t
:
 
0
0
:
2
5
 
1
3
 
F
e
b
r
u
a
r
y
 
2
0
1
0



To accelerate the convergence of the proposed method, these resulting weighted

values of different units were normalised and assigned to each value of each input
variable, and a composite weighted value was calculated for each grid.

4.2 The GP and GA-based method

To ensure the accuracy of the algorithm, grids data of 261 villages (80% of the
total number of villages) were randomly selected as training set to build the

population model. The GP software tool used in this study was Gpc + + 0.40,

Figure 6. Distribution of transport infrastructure, rivers, slope (a) and land-cover types (b)
in Heshun.
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which was developed by Adam P. Fraser, Cybernetics Research Institute,

University of Salford, Salford, UK. Gpc + + is a program package for finding

functions on data. All used parameters were set as listed in Table 1. The

parameters ‘Max creation depth’ and ‘Max crossover depth’ indicated the

maximum size of the tree of the initial group and of the group from crossover,

respectively. It was observed that a larger initial tree size often gave better results.

This may be for the reason that the larger initial tree will lead to good initial

exploration of the search space. The values of ‘Max creation depth’ and ‘Max

crossover depth’ were thus constrained to 40 and 17. This restriction is necessary

since GP has the tendency to produce uncontrollably large trees, if the tree size is

not limited (Muttil and Lee 2005). Therefore, a maximum tree size of 17 evolved

simple expressions that were easy to interpret. It was noted that there were two

termination criteria for computing processes in both GP and GA: one was that the

best fitness could achieve a certain value and the other was that the sum of

generation exceeded the pre-specified number.

In the study, the GP program was run 100 times and the result is listed in Table 2.

Because GP was capable of selecting input variables that contributed to the model, a

measure of the significance of a variable in GP was the number of times the variable

was selected. In this way, population densities in various land-cover types and

distance to transport infrastructure were the most significant variables for this

study.

Then, we chose the best GP model with the highest fitness in runs as the optimised

object of GA

popu ið Þ~22{3:24|
ln

road ið Þ
205:5|lan cov ið Þ|slope ið Þ

� �

exp 0:01|nei vil ið Þð Þ ð9Þ

nei vil ið Þ~
XEN

j~1

popu nei jð Þ
Dis i, jð Þ ð10Þ

Table 1. Genetic programming parameters.

Parameter Value

Group size 500
Generations 2000
Max creation depth 40
Max crossover depth 17
Crossover rate 0.98
Mutation rate 0.05
termination criterions Maximum generation: 2000

R2>0.9500

Table 2. Number of input variable selections in 100 GP runs for population distribution in
Heshun.

Input variables Slope Rivers Land-cover
Transport

infrastructure
Neighbouring

villages Total

No. of selection 18 6 71 58 25 178
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where popu(i) was the simulated population of grid i; slope(i) was slope at grid i;

lan_cow(i) was the population density of the land-cover type to which grid i

belonged; road(i) was the distance from grid i to the nearest road; nei_vil(i) was the

influence which the neighbouring villages exerted to grid i. According to

equation (10), the value of variable nei_vil(i) was calculated by two factors: Dis(i, j),
the distance from grid i to neighbouring village j and popu_nei(j), the population of

the neighbouring village j. EN was the total number of neighbouring villages of grid

i. Hence, a GA individual in the study comprised the above four factors, namely,

popu(i), slope(i), lan_cow(i) and nei_vil(i).

In the evolutionary approach, the initial group of candidate solutions is

generated randomly across the search space (Sastry et al. 2005). Each individual in

the group is evaluated to determine its ‘fitness’, which decides how likely the

individual is to survive and breed into the next generation (Li and Yeh 2005).
Then, reproduction selects the good ones in a group according to their fitness and

forms a mating pool. In this study, the reproduction method was fitness

proportionate. Because the fitness proportions were rounded in computing, the

individual number of the new group sometimes was not consistent with that of the

previous one. The algorithm sorted the differences between the individual

numbers before and after being rounded and added 1 in turn to those individuals

whose losses were relatively greater until the differences became zero. New

individuals were created by the operations of crossover and mutation. The values
of crossover and mutation rates had a large influence on the performance of GA.

If they were too big, then the optimising process had difficulty in convergence; if

they were too small, premature convergence might occur, leading to erroneous

conclusions. In conventional GA, crossover and mutation rates are often set to

some fixed values. Much experience is required to set the values of crossover and

mutation rates. To avoid this problem, genes of two individuals were randomly

exchanged with probability Pcr (0.8–1) in the study. Besides, there was a criterion

to decide whether to mutate the selected individual or not rather than giving a
very low mutation rate. First, a finite value Pmi was assigned to a specified

individual Kpid(i)_GA as

Pmi~h{Code po|0:01=Size GA ð11Þ

where Code_po was the serial number of the individual Kpid(i)_GA in the

individual fitness vector, which increased by its own fitness; and h was a value in

[0, 1]. According to equation (11), the greater the fitness, the smaller was Pmi. A

random value (typically 0 or 1) was then assigned to every individual in the
generation to compare with the correlating Pmi. If it was less than Pmi, the selected

individual Kpid(i)_GA directly added noise which was a uniformly distributed

random value in [20.5, 0.5]. In this way, individuals with greater fitness seemed to

have little probability of being mutated.

In GA, the group size is essential to improve the efficiency of the algorithm. The

calculation speed may become slow when the group size is too large. Studies were

carried out to determine the proper group sizes for GA. It was found that the group

size of 150 could yield the highest value of the best fitness. This means that the group

size of 150 was more effective in finding the optimal solution because it can generate
the highest value. The improvement in the best fitness value stabilised after 1200

generations for all group sizes.
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Similarly, the GA program was run 100 times and the final GP&GA model was

popu ið Þ~28{2:86|
ln

road ið Þ
172:5|lan cov ið Þ|slope ið Þ

� �

exp 0:002|nei vil ið Þð Þ ð12Þ

We only did a single training-test for the model in the study in order to simply

validate the feasibility and accuracy of the proposed method. To obtain a more

precise estimate of each model, one could apply a cross-validation with repeated

training/test samplings. However, to some extent, this operation greatly increases

the calculation and complication of the algorithms and results in prolongation of the

running time.

4.3 Results

Comparison was made by applying the three methods, the stepwise regression

analysis, the adapted gravity model approach and the GP&GA-based method, to

estimate the population of 161 km grids in the remaining 65 villages. The resulting

grid values were then aggregated to villages and compared to actual census data at

the village level.

In our stepwise regression analysis, taking the census data being used for the

regression function, six variables were selected, i.e. slope, river, road, rail, lan_cov

and nei_vil. The regression equation was obtained as follows using the uniform

training data

popu ið Þ~49:31z543:876|land cov ið Þ{25:792|slope ið Þz243:764|nei vil ið Þ ð13Þ

The multiple correlation coefficient (R) was 0.735, while the ratio (F) of regressive

standard error (S9) and residual standard error (S) was 574.305. The test of

significance showed that the significance level of the regression equation was more

than 95%, indicating that the established model equation (13) was reliable.

The simplest gravity models for population estimation are additive linear models

of the form

popu ið Þ~
Xm

j~1

sj

dij

� �w
ð14Þ

where popu(i) is the population of grid i, sj is the size of the city j, dij is the distance

from grid i to city j, m is the total number of cities within the given searching extent

and w is exponent to be simulated. Besides socioeconomic factors, population

distribution is greatly influenced by natural factors (Yue et al. 2003). Therefore, the

adapted gravity model used in the study took the effect of the same six independent

variables into account and was formulated as

popu ið Þ~59:89|road ið Þ0:001
|rail ið Þ0:002

|slope ið Þ0:15
|lan cov ið Þ1:03

|river ið Þ0:007

|nei vil ið Þ1:22
ð15Þ

where river(i) and rail(i) were respectively the distance from grid i to the nearest river

and railway.

Table 3 illustrates the distribution of percentage differences between simulated

populations and census data, using three different interpolation methods. It is easy

to find from Table 3 that the overall correspondence of the GP&GA-based method
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is such that 34% of the simulated village population corresponds with the official

census. The table also indicates a difference of less than 10% (¡) between the census

data and the simulated population in 77% of the total of 65 villages, and most of

these villages are aggregated to the middle and the east of Heshun and contain the

majority of the population. However, in the adapted gravity model estimation, only

51% of villages show differences of less than 10 (¡) and the rest show differences of

10–30% (¡). The result of stepwise regression analysis is much worse. There are just

60% of villages where differences are less than 30% and differences in some villages

reach 55% or more. This may be viewed as preliminary evidence that the GP&GA

method is better in estimating accuracy.

Table 4 shows results from simple linear regression analysis on ‘real’ population

counts of all 326 villages (Figure 7) and population estimates from each of the three

methods. Three indices from the regression analysis are used for the comparison, i.e.

regression coefficient (b), coefficient of determination (R2) and mean square error

(MSE) (Cai et al. 2006). The regression coefficients are all smaller than that with the

largest value from stepwise regression algorithm. This might indicate a trend of

underestimation in the interpolation methods (0.897 from the stepwise regression

algorithm, 0.983 from the gravity model and 0.997 from the GP&GA). The values of

R2 from the three regressions are 0.805 for the stepwise regression algorithm, 0.936

for the gravity model and 0.973 for the GP&GA, indicating that the GP&GA is

better than the gravity model method, and the gravity model method is better than

the stepwise regression algorithm. The MSEs show the same order as the R2. Thus, it

is the finest interpolation of GP&GA model, rather than any fundamental error in

the values of stepwise regression algorithm and the gravity model, which results in

this highly favorable comparison.

Table 3. Statistics of percentage differences in 65 villages.

Percentage
difference

No. of villages

GP&GA-based model Gravity model Stepwise regression model

,20.3 0 0 16
From 20.3 to 20.2 0 6 7
From 20.2 to 20.1 2 9 5
20.1–0 20 13 6
0 22 4 2
0–0.1 18 16 7
0.1–0.2 3 11 6
0.2–0.3 0 6 6
.0.3 0 0 10

Table 4. Results from regression analysis between ‘real’ population in 326 villages and
population estimation from the three models.

Coefficient Regression coefficient
Coefficient of
determination Mean square error

GP&GA-based model 0.997 0.973 801.132
Gravity model 0.983 0.936 3976.289
Stepwise regression
model

0.897 0.805 22,794.268
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Figure 8 indicates that in some sparsely populated areas, in particular the western

villages, the populations are significantly overestimated by all three methods.

Obviously, as most of these areas are close to the transport infrastructure and/or

relatively developed towns, small percentages of urban populations redistributed on

rural grids result in such overestimations. Most substantial differences occur in villages

whose populations are negligible at a regional scale. The most significant ‘over-

estimation’ of simulated population is for Yixing, whose values for various factors are

unusually good. As the county seat, it has a disproportionately larger number of

administrative buildings compared with its resident population. Also, in transport and

economic centres of the county (most are located in the middle of the region),

populations may justify the higher simulated values relative to the official census counts.

To validate the efficiency of the three methods in estimating the population in high

and low density areas at the same time, 326 villages in the study area were subdivided

into 10 townships and 316 villages. From Figure 9(b), the percentage differences in the

villages with the GP&GA model are much smaller than with the other models and the

results tend to be consistent because most percentage differences of the model are in

[20.10, 0.10]. In this figure, the villages were coded based on their size. However, the

other two methods performed better in some townships. In Weima, a southern

transport centre in Heshun, the GP&GA model and the gravity model overemphasised

the importance of the influence of the transport infrastructure and the percentage

difference in the stepwise regression is the smallest. Although populations in 10

townships were all overestimated, the GP&GA model was the best of the three

methods and its percentage differences were all below 0.15.

Figure 7. Population distribution of villages in Heshun (2001).
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5. Conclusions

Population estimation models based on the integration of independent variables and

census data have numerous applications. These models can be used to provide

knowledge of the size, behaviour and spatial distribution of the human population,

which is useful for understanding many social and political processes and

phenomena. However, which factors actually impact on the population distribution
in a specific region? How do they affect it? None of these developed models

performed very well to solve these problems.

Figure 8. Population estimations and percentage differences from GP&GA model (a1 and
b1), gravity model (a2 and b2) and stepwise regression model (a3 and b3).
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After reviewing issues related to the population model and population

interpolation methods, we creatively introduced a GP&GA-evolved model

combining various GIS derived variables to estimate population distribution. The

whole modelling procedure consisted of two stages: the first stage focused on finding

the most appropriate mathematical representation of the relationship between

population distribution and independent variables; the second aimed to optimise the

GP model by GA. In the implementation example, we selected slope, land-cover

types, distance to rivers and to transport infrastructure, and influence of

neighbouring villages as explanatory variables, and used three different population

models to estimate population in 161 km grids. We then discussed the errors of

these models in detail. The results indicated that, compared with the stepwise

regression analysis and the adapted gravity model approaches, the GP&GA-based

method not only overcomes the disadvantage of traditional mapping methods which

usually require a priori knowledge about how to solve the problem, but also has

better fault-tolerance and greatly enhances the calculation accuracy both in high and

low density areas.

Although the proposed method has been tested only in Heshun, a rural region in

the north of China, it can be used as a modelling tool to solve population

interpolation problems on any scales as GP&GA is general and provides a single,

unified method for addressing a variety of seemingly different problems in a variety

of areas. Potential applications may include mapping the population distribution of

the world, various administrative regions and different natural zones, etc. In

addition, this method can simultaneously simulate population surfaces in a number

of regions for automatic modelling and better accuracy.

At the same time, there are some problems in our method for future studies. As the

popularity of the method increases, this will require more extensive data collection to

ensure that the GIS database is accurate and up to date. Moreover, the method needs

more cases to improve its efficiency and accuracy in mapping population because it has

only been tested on one set of data, and at only one scale in the study. The compute

process of the method should be further simplified. In addition, population

distribution in different areas and periods are affected by different factors, thus

creating difficulties in the selection of corresponding input variables. However, these

Figure 9. Percentage differences of population estimation in townships (a) and villages (b)
from the GP&GA model, the gravity model and the stepwise regression model.
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can be improved in the future by developing GIS and computer techniques and

acquiring more knowledge of the spatial composition of the population. Therefore, the

method provides flexibility regardless of the extent of study.
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