About IGSNRR
News
Research
People
International Cooperation
Education & Training
Publications
Facilities
Journals
Library
Scientific Database
Hosted Societies
Eye on Chinese Geography
Links
Location: Home > Publications > New Papers
Paper Code  
Title   Materials, energy, water, and emissions nexus impacts on the future contribution of PV solar technologies to global energy scenarios
Authors   Ayman Elshkaki
Corresponding Author  
Year   2019
Title of Journal  
Volume  
Number  
Page  
Abstract  
PV technologies are increasingly making significant contribution to global energy generation (GEG), attributed to their high potential of increasing efficiency, cost reduction, and improving energy security. These technologies however rely on metals that are identified as critical due to risks associated with their supply, and other materials that require energy and water for their production. In this paper, a comprehensive assessment of required materials for PV technologies, an analysis of their materials inflows, outflows, and stocks, an estimate of their maximum contribution to global energy scenarios (GES), and an estimate of energy and water required for their material production and associated CO2 emissions under the nexus approach, have been carried out using a dynamic material flow-stock model. A total of 100 energy-material nexus scenarios, which combines 10 GES and 10 materials scenarios, have been analysed. Results indicate that although most GES are difficult to be realized under current PV technologies market share and condition; these technologies could make significant contribution to GEG in future. The three commercial thin-film PV technologies could produce between 3% and 22% of electricity generation in IEA-450 scenario. Energy required for PV materials production is expected to reach between 5.9% and 11.8% of electricity generated (EG) by PV solar and between 0.76% and 1.52% of total EG in IEA-450 scenario by 2050. CO2 emissions associated with material production are expected to be between 0.94% and 2.2% of total CO2 emissions in IEA-450 scenario by 2050.
Full Text  
Full Text Link   https://www.nature.com/articles/s41598-019-55853-w    
Classification: SCI
Source:
Title of Journal: Scientific Reports
Download:
Copyright Institute of Geographic Sciences and Natural Resources Research, CAS
Address: 11A, Datun Road ,Chaoyang District, Beijing, 100101, China   Email: weboffice@igsnrr.ac.cn