About IGSNRR
News
Research
People
International Cooperation
Education & Training
Publications
Facilities
Journals
Library
Scientific Database
Hosted Societies
Eye on Chinese Geography
Links
Location: Home > Publications > New Papers
Paper Code  
Title   Material-energy-water-carbon nexus in China’s electricity generation system up to 2050
Authors   Ayman Elshkaki
Corresponding Author  
Year   2019
Title of Journal  
Volume  
Number  
Page  
Abstract  
Energy, water, and materials are interconnected in several ways. Increasing demand for resources combined with environmental, availability, accessibility, and security risks associated with their supply are raising concerns for their future sustainable management. Resources nexus and CO2 emissions in China have been analysed using a dynamic material flow-stock model for 10 electricity generation technologies (EGT) and 21 materials. The analysis includes 10 scenarios, combining energy scenarios; National Development and Reform Commission (NDRC) and International Energy Agency (IEA-450), and scenarios for EGT materials content and energy, water, and CO2 intensities. Cumulative energy, water, and CO2 emissions associated with EGT materials production in NDRC scenario are double those in IEA-450 scenario. Annual energy required for materials is expected to be between 2.3% and 3.4% of annual EG. Highest water, energy, and CO2 are related to PV and wind in NDRC scenario and hydropower and PV in IEA-450 scenario. Required Fe and concrete for EGT is much higher than Al, however energy, water, and CO2 emissions associated with Al are either higher or slightly lower than Fe and concrete. Careful selection of EGT and their materials is significant to reduce EG impacts, and considering resources nexus is significant for future integrated resources policies.
Full Text  
Full Text Link   https://www.sciencedirect.com/science/article/pii/S036054421932050X    
Classification: SCI
Source:
Title of Journal: Energy
Download:
Copyright © Institute of Geographic Sciences and Natural Resources Research, CAS
Address: 11A, Datun Road ,Chaoyang District, Beijing, 100101, China   Email: weboffice@igsnrr.ac.cn