About IGSNRR
News
Research
People
International Cooperation
Education & Training
Publications
Facilities
Journals
Library
Scientific Database
Hosted Societies
Eye on Chinese Geography
Links
Location: Home > Publications > New Papers
Paper Code  
Title   Drought Impacts on Vegetation Indices and Productivity of Terrestrial Ecosystems in Southwestern China During 2001-2012
Authors   Zhou Lei, Wang Shaoqiang, Chi Yonggang, Wang Junbang
Corresponding Author  
Year   2018
Title of Journal  
Volume   28
Number   5
Page  
Abstract   Drought, as a recurring extreme climate event, affects the structure, function, and process of terrestrial ecosystems. Despite the increasing occurrence and intensity of the drought in the past decade in Southwestern China, the impacts of continuous drought events on vegetation in this region remain unclear. During 2001-2012, Southwestern China experienced the severe drought events from 2009 to 2011. Our aim is to characterize drought conditions in the Southwestern China and explore the impacts on the vegetation condition and terrestrial ecosystem productivity. The Standardized Precipitation Index (SPI) was used to characterize drought area and intensity and a light-use efficiency model was used to explore the effect of drought on the terrestrial ecosystem productivity with Moderate Resolution Imaging Spectrometer (MODIS) data. The SPI captured the major drought events in Southwestern China during the study period, indicated that the 12-year period of this study included both normal' precipitation years and two severe drought events in 2009-2010 and 2011. Results showed that vegetation greenness (Normalized Difference Vegetation Index, NDVI and Enhanced Vegetation Index, EVI) both declined in 2009/2010 drought, but the 2011 drought resulted in less declines of vegetation greenness and productivity due to shorten drought duration and rising temperature. Meanwhile, it was about 5 months lapse between drought events and maximum declines in vegetation greenness for 2009/2010 drought events. In addition, forest, grassland and cropland revealed significant different ecosystem responses to drought. It indicated that grassland showed an early sensitivity to drought, while cropland was the most sensitive to water deficit and forest was more resilient to drought. This study suggests that it is necessary to detect the difference responses of ecosystem to drought in a regional area with satellite data and ecosystem model.
Full Text  
Full Text Link       
Classification: SCI
Source:
Title of Journal: CHINESE GEOGRAPHICAL SCIENCE
Download:
Copyright © Institute of Geographic Sciences and Natural Resources Research, CAS
Address: 11A, Datun Road ,Chaoyang District, Beijing, 100101, China   Email: weboffice@igsnrr.ac.cn